精英家教网 > 高中数学 > 题目详情
已知函数,f(x)=
0(x>0)
-π(x=0)
x
2
3
+1(x<0)
,则复合函数f{f[f(-1)]}=(  )
A、x2+1
B、π2+1
C、-π
D、0
分析:欲求f{f[f(-1)]}的值,可从里向外注意脱去“f”,将自变量代入相应的解析式,从而求出所求.
解答:解:∵-1<0∴f(-1)=(-1)
2
3
+1
=2
∵2>0∴f(2)=0
∵x=0∴f(0)=-π
∴f{f[f(-1)]}=f[f(2)]=f(0)=-π
故选C.
点评:本题主要考查了分段函数求值,解题的关键是判定自变量所在区间代入相应的解析式求解,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值为3,f(x)的图象的相邻两对称轴间的距离为2,在y轴上的截距为2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•枣庄二模)已知函数y=
f(x),x>0
g(x),x<0
是偶函数,f(x)=logax的图象过点(2,1),则y=g(x)对应的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)-
1
2
是定义域为实数集R的奇函数,则f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+…+f(
2010
2011
)
的值为
1005
1005

查看答案和解析>>

同步练习册答案