精英家教网 > 高中数学 > 题目详情
8.sin20°cos70°+cos20°sin70°=1.

分析 由条件利用两角和的正弦公式,求得所给式子的值.

解答 解:sin20°cos70°+cos20°sin70°=sin(20°+70°)=sin90°=1,
故答案为:1.

点评 本题主要考查两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.${sin^2}\frac{π}{12}-{cos^2}\frac{π}{12}$的结果是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=(2,-1),\overrightarrow b=(-1,m),\overrightarrow c=(-1,2)$若$(\overrightarrow a+\overrightarrow b)∥\overrightarrow c$,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x2-4x-5(x∈[-1,5])的值域是[-9,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3中直线AM与x轴交于点N(n,0),则m对应的数就是n,记作f(m)=n.

下列说法中正确命题的序号是①③④.(填出所有正确命题的序号)
①f($\frac{1}{4}$)=-1;                       
②f(x)是奇函数;
③f(x)是定义域上的单调函数;        
④f(x)的图象关于点($\frac{1}{2}$,0)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图所示.
(1)求该函数的解析式;
(2)求该函数的单调增区间;
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平行四边形ABCD中,A(4,1,3)、B(2,-5,1)、C(3,7,-5),则顶点D的坐标为(  )
A.($\frac{7}{2}$,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期为π,且f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.
(1)求ω和φ的值;     
(2)求f(x)的单调递增区间;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某企业在2014年底设立一项奖励基金,规模为a万元(a∈R),计划从2015年起,每年年终从基金取出20万奖励优秀员工.由于投资得当,该基金年平均收益率可达10%.若预计到2020年初,基金规模不小于a万元,则a的最小值为47.96.

查看答案和解析>>

同步练习册答案