精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若曲线在点处的切线方程为,求的值;

2)当时,求证:

3)设函数,其中为实常数,试讨论函数的零点个数,并证明你的结论.

【答案】(1);(2)见解析;(3)见解析

【解析】

1)根据导数的意义可知,解得切点;

2)将所证明不等式转化为证明恒成立,设,利用导数证明

3等价于,等价于,令,利用导数分析函数的性质,可知函数的极小值0,极大值,讨论当时,结合零点存在性定理确定零点的个数.

1.所以过点的切线方程为,所以

解得

2)证明:即证,因为,所以即证

,则

,解得

4

-

0

+

极小

所以 时,取得最小值

所以当时,

3)解:等价于,等价于

,则

,得

1

-

0

+

0

-

极小0

极大

(Ⅰ)当时,,所以无零点,即定义域内无零点

(Ⅱ)当时,若,因为

,所以在只有一个零点,

而当时,,所以只有一个零点;

(Ⅲ)当时,由(Ⅱ)知在只有一个零点,且当时,,所以恰好有两个零点;

(Ⅳ)当时,由(Ⅱ)、(Ⅲ)知在只有一个零点,在只有一个零点,在时,因为

只要比较的大小,即只要比较的大小,

因为,因为,所以

所以

,所以,即在也只有一解,所以有三个零点;

综上所述:当时,函数的零点个数为0 时,函数的零点个数为1;当时,函数的零点个数为2;当时,函数的零点个数为3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起使得重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两品牌计划入驻某商场,该商场批准两个品牌先进场试销天。两品牌提供的返利方案如下:甲品牌无固定返利,卖出件以内(含件)的产品,每件产品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每卖出一件产品再返利元。经统计,两家品牌在试销期间的销售件数的茎叶图如下:

(Ⅰ)现从乙品牌试销的天中随机抽取天,求这天的销售量中至少有一天低于的概率.

(Ⅱ)若将频率视作概率,回答以下问题:

①记甲品牌的日返利额为(单位:元),求的分布列和数学期望;

②商场拟在甲、乙两品牌中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困村共有农户100户,均从事水果种植,平均每户年收入为1.8万元,在当地政府大力扶持和引导下,村委会决定2020年初抽出户()从事水果销售工作,经测算,剩下从事水果种植的农户平均每户年收入比上一年提高了,而从事水果销售的农户平均每户年收入为万元.

1)为了使从事水果种植的农户三年后平均每户年收入不低于2.4万元,那么2020年初至少应抽出多少农户从事水果销售工作?

2)若一年后,该村平均每户的年收入为(万元),问的最大值是否可以达到2.1万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.

图1 图2

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最小值.

(Ⅱ)若在区间上有两个极值点

(i)求实数的取值范围;

(ii)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量满足:的夹角为||5的夹角为||3,则的最大值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数,为其前项的和,且成等差数列.

1)写出的值,并猜想数列的通项公式

2)证明(1)中的猜想;

3)设为数列的前项和.若对于任意,都有,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上点,分别是以为底边的等腰三角形,沿虚线剪开后,分别以为折痕折起,使得重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形的边长为______.

查看答案和解析>>

同步练习册答案