精英家教网 > 高中数学 > 题目详情

【题目】已知函数

⑴从区间内任取一个实数,设事件表示“函数在区间上有两个不同的零点”,求事件发生的概率;

⑵若联系掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件表示“上恒成立”,求事件发生的概率.

【答案】(1)(2)

【解析】试题分析:

(1)利用题意考查 ,据此得到关于实数 的不等式组即可求得实数 的取值范围,然后求解事件发生的概率.

(2)结合题意分别讨论 ,然后利用分类加法计数原理求解满足题意的基本事件个数,然后结合古典概型的计算公式计算事件发生的概率.

试题解析:

(1)因为函数在区间上有两个不同的零点,

所以,即有两个不同的正根

所以,所以

(2)由已知,所以上恒成立,

故需且只需 (*).

时,适合(*);当时,适合(*);当时, 适合(*);

时,适合(*).满足(*)的基本事件个数为 .而基本事件总数为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,底面上的点

1求证:平面

2,若的中点,且直线与平面所成角的正弦值为,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示单位长度为:cm

1求该几何体的体积;

2求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,圆

1)判断直线与圆的位置关系,并证明你的结论;

2)直线过直线的定点且,若与圆交与两点,与圆交与 两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)当时,讨论函数的单调性;

(3)当时,记函数的导函数的两个零点是),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,若不等式的解集为1,4,且方程fx=x有两个相等的实数根。

1求fx的解析式;

2若不等式fx>mx在上恒成立,求实数m的取值范围;

3解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为为椭圆上一点(在轴上方),连结并延长交椭圆于另一点,设.

(1)若点的坐标为,且的周长为8,求椭圆的方程;

(2)若垂直于轴,且椭圆的离心率,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运输队接到给灾区运送物资的任务,该运输队有8辆载重为型卡车,6辆载重为型卡车,10名驾驶员,要求此运输队每天至少运送救灾物资.已知每辆卡车每天往返的次数为型卡车16次, 型卡车12次.每辆卡车每天往返的成本为型卡车240元, 型卡车378元.问每天派出型卡车与型卡车各多少辆,运输队所花的成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆,直线,过右焦点的直线与椭圆交于两点,线段的垂直平分线分别交直线于点

1求弦长的最小值;

2在直线上任取一点,当的斜率时,求的值.

查看答案和解析>>

同步练习册答案