精英家教网 > 高中数学 > 题目详情
已知抛物线C1的焦点与椭圆C2
x2
6
+
y2
5
=1
的右焦点重合,抛物线C1的顶点在坐标原点,过点M(4,0)的直线l与抛物线C1分别相交于A、B两点.
(Ⅰ)写出抛物线C1的标准方程;
(Ⅱ)若|AB|=4
10
,求直线l的方程.
(本小题满分12分)
(1)∵抛物线C1的焦点与椭圆C2
x2
6
+
y2
5
=1
的右焦点重合,
∴抛物线C1的焦点坐标为F(1,0),
∵抛物线C1的顶点在坐标原点,
∴抛物线C1的方程为:y2=4x.…(6分)
(2)若直线AB的斜率不存在时,|AB|=8,不合题意,故直线AB的斜率存在.
由题意可设直线AB的方程为:y=k(x-4)(k≠0).
联立
y=k(x-4)
y2=4x
,消去x,得ky2-4y-16k=0,

∴△=16+64k2>0,设A(x1,y1),B(x2,y2),
y1+y2=
4
k
,y1•y2=-16,
|AB|=
1+
1
k2
|y1-y2|

=
1+
1
k2
(y1+y2)2-4y1y2

=
1+
1
k2
(
4
k
)
2
+64

|AB|=4
10
,得k2=1,
∴k=±1,
∴直线l的方程为:x-y-4=0或x+y-4=0.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知平面αβ,直线l?α,点P∈l,平面α、β间的距离为5,则在β内到点P的距离为13且到直线l的距离为5
2
的点的轨迹是(  )
A.一个圆B.四个点
C.两条直线D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:x2=2py(p>0)的焦点F在直线l:x-y+1=0上
(I)求抛物线C的方程;
(Ⅱ)设直线l与抛物线C相交于P,Q两点,求线段PQ中点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点到准线的距离为2,且过点(1,2),则抛物线的方程式为(  )
A.y2=4xB.y2=±4x
C.x2=4y或y2=4xD.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过抛物线y2=2px(p>0)的焦点,斜率为2
2
的直线交抛物线于A(x1,y1)和B(x2,y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若
OC
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8xB.y2=2x或y2=8x
C.y2=4x或y2=16xD.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△FAB,点F的坐标为(1,0),点A、B分别在图中抛物线y2=4x及圆(x-1)2+y2=4的实线部分上运动,且AB总是平行于x轴,那么△FAB的周长的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是抛物线的焦点弦,且满足,则直线的斜率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是         

查看答案和解析>>

同步练习册答案