A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
分析 要使|PA|最小,只有|OP|最小,利用点到直线的距离公式求得|OP|的最小值d,利用勾股定理可得|PA|的最小值.
解答 解:要使|PA|最小,只有|OP|最小,如图所示:
而|OP|的最小值,即为原点O到直线$l:x+y-2\sqrt{2}=0$的距离d,
由于d=$\frac{|0+0-2\sqrt{2}|}{\sqrt{\sqrt{2}}}$=2,
故|PA|的最小值为$\sqrt{{d}^{2}{-r}^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
故选:C.
点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,体出了转化、数形结合的数学思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(-∞,0]∪[\frac{1}{4},+∞)$ | B. | $(-∞,-\frac{1}{4}]∪[0,+∞)$ | C. | $[-\frac{1}{4},0]$ | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 一个对称中心是(-$\frac{π}{3}$,0) | B. | 一条对称轴方程为x=$\frac{π}{3}$ | ||
C. | 在区间[-$\frac{π}{3}$,0]上单调递减 | D. | 在区间[0,$\frac{π}{3}$]上单调递增 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com