精英家教网 > 高中数学 > 题目详情

【题目】如表是某位同学连续5次周考的数学、物理的成绩,结果如下:

周次

1

2

3

4

5

数学(分)

79

81

83

85

87

物理(分)

77

79

79

82

83

参考公式:表示样本均值.

1)求该生5次月考数学成绩的平均分和物理成绩的方差;

2)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量的线性回归方程.

【答案】1)数学成绩的平均分;物理成绩的方差2

【解析】

1)根据平均数的定义及求法,代入即可求得该生5次月考数学成绩的平均分;先求得物理平均分,根据方差公式即可求得物理成绩的方差.

2)根据所给回归直线的方程公式,先求得,即可求得,再代入公式求得,即可得线性回归方程.

1

2)根据(1)中所得,及结合表中数据

计算可得,

所以回归系数为

故所求的线性回归方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了解高二学生学习效果,从高二第一学期期中考试成绩中随机抽取了25名学生的数学成绩(单位:分),发现这25名学生成绩均在90150分之间,于是按,…,分成6组,制成频率分布直方图,如图所示:

1)求的值;

2)估计这25名学生数学成绩的平均数;

3)为进一步了解数学优等生的情况,该学校准备从分数在内的同学中随机选出2名同学作为代表进行座谈,求这两名同学分数在不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(a>b>0)的两个焦点分别为F1F2,短轴的一个端点为PPF1F2内切圆的半径为,设过点F2的直线l与被椭圆C截得的线段为RS,当lx轴时,|RS|3.

(1) 求椭圆C的标准方程;

(2) 若点M(0m),(),过点M的任一直线与椭圆C相交于两点A.By轴上是否存在点N0n)使∠ANM=∠BNM恒成立?若存在,判断mn应满足关系;若不存在,说明理由。

(3) 在(2)条件下m=1时,求ABN面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品公司研发生产一种新的零售食品,从产品中抽取200件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下的频率分布直方图:

(1)求直方图中的值;

(2)由频率分布直方图可认为,这种产品的质量指标值服从正态分布,试计算这批产品中质量指标值落在上的件数;

(3)设产品的生产成本为,质量指标值为,生产成本与质量指标值满足函数关系式,假设同组中的每个数据用该组数据区间的右端点代替,试计算生产该食品的平均成本.参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是_________.

1)命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则.

2)命题“”的否定“.

3)若为假命题,则均为假命题.

4)“”是“直线与直线平行”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,点分别为的中点,侧棱底面.

1)求证://平面

2)求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点.

(Ⅰ)若是第一象限内该椭圆上的一点, ,求点的坐标.

(Ⅱ)若直线与圆相切,交椭圆两点,是否存在这样的直线,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月28日,成雅铁路开通运营,使川西多个市县进入动车时代,融入全国高铁网,这对推动沿线经济社会协调健康发展具有重要意义.在试运行期间,铁道部门计划在成都和雅安两城之间开通高速列车,假设每天7:00-8:00,8:00-9:00两个时间段内各发一趟列车由雅安到成都(两车发车情况互不影响),雅安发车时间及其概率如下表所示:

第一趟列车

第二趟列车

发车时间

7:10

7:30

7:50

8:10

8:30

8:50

概率

0.2

0.3

0.5

0.2

0.3

0.5

若小王、小李二人打算乘动车从雅安到成都游玩,假设他们到达雅安火车站候车的时间分别是周六7:00和7:20(只考虑候车时间,不考虑其它因素).

(1)求小王候车10分钟且小李候车30分钟的概率;

(2)设小李候车所需时间为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

同步练习册答案