精英家教网 > 高中数学 > 题目详情
17.P是边长为a的正三角ABC所在平面外一点,PA=PB=PC=a,E、F是AB和PC的中点,则异面直线PA与EF所成的角为(  )
A.30°B.45°C.60°D.90°

分析 过F做FG∥PA,交AC于G,则∠EFG是PA与EF所成的角的平面角(或所成角的补角),由此利用余弦定理能求出异面直线PA与EF所成的角.

解答 解:如图,∵P是边长为a的正三角ABC所在平面外一点,PA=PB=PC=a,E、F是AB和PC的中点,
在△PEC中,PE=CE=$\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}}{2}a$,PC=a,
∴PC的中线EF=$\sqrt{(\frac{\sqrt{3}a}{2})^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
过F做FG∥PA,交AC于G,则∠EFG是PA与EF所成的角的平面角(或所成角的补角),
连接EG,在△EFG中,∵FG=$\frac{1}{2}PA=\frac{1}{2}a$,EG=$\frac{1}{2}BC=\frac{1}{2}a$,EF=$\frac{\sqrt{2}}{2}a$,
∴EG2+FG2=EF2,∴EG⊥FG,EG=FG,
∴∠EFG=45°,即异面直线PA与EF所成的角为45°.
故选:B.

点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知圆中$\widehat{AC}$=$\widehat{BD}$,AC=CD,过C点的圆的切线与BA的延长线交于E点.
证明:(1)AD∥CE
(2)CD.CE=BC.AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\frac{|3x+4y+8|}{25}$的离心率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数极限:$\underset{lim}{x→4}$$\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=log3x.
(1)作出这个函数的图象;
(2)当0<a<2时,有f(a)>$\frac{1}{2}$,利用图象求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆的圆心为坐标原点,且经过点(-1,$\sqrt{3}$).
(1)求圆的方程;
(2)若直线l1:x-$\sqrt{3}$y+b=0与此圆有且只有一个公共点,求b的值;
(3)求直线l2:x-$\sqrt{3}y+2\sqrt{3}$=0被此圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设$\overrightarrow{a}$=(cosx+sinx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(cosx-sinx,2sinx),其中x∈R.函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的最大值、最小值及相应x的值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果绘成频率分布直方图如图:(直方图中每个区间仅包含左端点)
(1)求直方图中的x值;
(2)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若下列程序执行的结果是100,则输入的x的值是(  )
A.0B.100C.-100D.100或-100

查看答案和解析>>

同步练习册答案