精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(Ⅰ)求证:数列{
1
an
}
为等差数列;
(Ⅱ)试问数列{an}中ak-ak+1(k∈N*)是否仍是{an}中的项?如果是,请指出是数列的第几项;如果不是,请说明理由.
(Ⅲ)令bn=
2
3
(
1
an
+5)
,证明:对任意n∈N*,都有不等式2bnbn2成立.
(Ⅰ)∵
an
an+1
=
4an+2
an+1+2

∴anan+1+2an=4anan+1+2an+1
即2an-2an+1=3anan+1
所以
1
an+1
-
1
an
=
3
2

所以数列{
1
an
}
是以
5
2
为首项,公差为
3
2
的等差数列.                    
(II)由(Ⅰ)可得数列{
1
an
}
的通项公式为
1
an
=
3n+2
2
,所以an=
2
3n+2

ak-ak+1=
2
3k+2
-
2
3(k+1)+2
=
4
9k2+21k+10
=
2
3•
3k2+7k+2
2
+2
.             
因为
3k2+7k+2
2
=k2 +3k+1+
k(k+1)
2

当k∈N*时,
k(k+1)
2
一定是正整数,所以
3k2+7k+2
2
是正整数.
所以ak-ak+1是数列{an}中的项,是第
3k2+7k+2
2
项.                 
(Ⅲ)证明:由(II)知:an=
2
3n+2
bn=
2
3
(
1
an
+5)=
2
3
(
3n+2
2
+5)=n+4

下面用数学归纳法证明:2n+4>(n+4)2对任意n∈N*都成立.
(1)当n=1时,显然25>52,不等式成立.
(2)假设当n=k(k∈N*)时,有2k+4>(k+4)2
当n=k+1时,2(k+1)+4=2•2k+4>2(k+4)2=2k2+16k+32=(k+5)2+k2+6k+7>(k+5)2
即有:2bn+1bn+12也成立.
综合(i)(ii)知:对任意n∈N*,都有不等式2bnbn2成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案