精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是直角梯形, 平面.

1)求证: 平面

2)求证: 平面

3)若的中点,求三棱锥的体积.

【答案】1)详见解析;(2)详见解析;(3.

【解析】试题分析:(1)根据线面平行的判定,只需证明直线与平面上的某一条直线平行即可,而条件中直接给出了,因此结合线面平行的判定,可直接证明平面;(2)首先根据条件中给出的数据易得,从而根据勾股定理可得,再由条件平面可得,从而根据线面垂直的判定即可证得平面;(3)由即可得到面的距离是到面距离的一半,从而.

试题解析:(1,且平面平面平面4

2)在直角梯形中,过于点,则四边形为矩形,

,又,在中,

,则

8

平面平面10

3中点,到面的距离是到面距离的一半,

. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望

附:,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(附加题,本小题满分10分,该题计入总分)

已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质

(1)若,判断是否具有性质,说明理由;

(2)若函数具有性质,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点则下列结论中正确的是__________

平面

②平面平面

③三棱锥的体积为定值

④存在某个位置使得异面直线成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的标准方程;

(2)是否存在斜率为的直线与椭圆相交于两点,使得 是椭圆的左焦点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆满足:①圆心在第一象限,截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过点分别做圆的两条切线,切点分别为 ,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C经过点(3,6)且焦点在x轴上.

(1)求抛物线C的标准方程;

(2)直线l 过抛物线C的焦点F且与抛物线C交于AB两点,求AB两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中, .

1)求出

2)归纳猜想出数列的通项公式;

3)证明通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1ACBC,点DAB的中点.

(1)求证:CD⊥平面A1ABB1

(2)求证:AC1∥平面CDB1

查看答案和解析>>

同步练习册答案