精英家教网 > 高中数学 > 题目详情

【题目】某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下

观众年龄

支持A

支持B

支持C

20岁以下

100

200

600

20岁以上(含20岁)

100

100

400


(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.

【答案】
(1)解:∵利用层抽样的方法抽取n个人时,从“支持A方案”的人中抽取了6人,

= =,

解得n=45


(2)解:从“支持C方案”的人中,用分层抽样的方法抽取的5人中,

年龄在20岁以下的有3人,分别记为1,2,3,年龄在20岁以上(含20岁)的有2人,记为a,b,

则这5人中任意选取2人,共有10种不同情况,分别为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),

其中恰好有1人在20岁以下的事件有:

(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)共6种.

故恰有1人在20岁以下的概率P= =


【解析】(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.(2)计算出这5人中任意选取2人的情况总数,及满足恰有1人在20岁以下的情况数,代入古典概率概率计算公式,可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数满足约束条件,则的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数存在极小值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在第一象限,且与直线轴都相切.

Ⅰ)求圆的方程.

Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若,求证:

(1)方程有实根.

(2)若﹣2<<﹣1且设x1,x2是方程f(x)=0的两个实根,则≤|x1﹣x2|<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是半圆的直径, 是半圆上除外的一个动点, 垂直于半圆所在的平面, .

(1)证明:平面平面

(2)当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,平面平面分别为中点.

(Ⅰ)求证:平面

(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法:
①f(x)为奇函数; ②f(x)的一条对称轴为x=
③f(x)的最小正周期为π; ④f(x)在区间[﹣ ]上单调递增;
⑤f(x)的图象关于点(﹣ ,0)成中心对称.
其中正确说法的序号是

查看答案和解析>>

同步练习册答案