精英家教网 > 高中数学 > 题目详情
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,且每次遇到红灯的概率都是
25
,每次遇到红灯时停留的时间都是1min.
(Ⅰ)求这名学生在上学路上因遇到红灯停留的总时间至多是2min的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间X的分布列及期望.
分析:(I)根据已知中学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,且每次遇到红灯的概率都是
2
5
,每次遇到红灯时停留的时间都是1min.若这名学生在上学路上因遇到红灯停留的总时间至多是2min,共包括三种情况,一是没有遇到红灯,二是遇到一次,三是遇到二次,分别求出三种情况的概率,然后代入互斥事件概率加法公式即可得到答案.
(II)分别计算出X取值为0,1,2,3,4时的概率,即可得到随机变量X的分布列,代入数学期望公式,即可得到答案.
解答:解:(Ⅰ)设这名学生在上学路上因红灯停留的总时间至多是2min为事件B,这名学生上学路上因遇到红灯停留的总时间为X,则X~B(4,
2
5
).
则由题意,得P(X=0)=(
3
5
4=
81
625
,(2分)
P(X=1)=C41
3
5
3•(
2
5
1=
216
625
,(4分)
P(X=2)=C42•(
3
5
2•(
2
5
2=
216
625
.(6分)
∴事件B的概率为P(B)=P(X=0)+P(X=1)+P(X=2)=
513
625
.(8分)
(Ⅱ)由题意,可得X可能取得的值为0,1,2,3,4(单位:min).由题意X~B(4,
2
5

∴P(X=k)=C4k•(
3
5
4-k•(
2
5
k(k=0,1,2,3,4).
∴即X的分布列是
X 0 1 2 3 4
P
81
625
216
625
216
625
96
625
16
625
∴X的期望是E(X)=4×
2
5
=
8
5
.(12分)
点评:本小题主要考查随机变量的分布列.二项分布.数学期望等知识,考查或然与必然的数学思想方法,以及数据处理能力.运算求解能力和应用意识,其中在计算至多(少)型事件的概率及计算随机变量的分布列时,准确的分类是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
25
,遇到红灯时停留的时间都是1 min.
求这名学生在上学路上因遇到红灯停留的总时间至多是2 min的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
13
,遇到红灯停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间至多是2min的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3
,遇到红灯时停留的时间都是2min,则这名学生在上学路上因遇到红灯停留的总时间恰好是4min的概率
8
27
8
27

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
2
5
,遇到红灯时停留的时间都是1min,则这名学生在上学路上因遇到红灯停留的总时间至多是3min的概率是
609
625
609
625

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
13
,遇到红灯时停留的时间都是2分钟.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率.
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4分钟的概率.

查看答案和解析>>

同步练习册答案