精英家教网 > 高中数学 > 题目详情
(2013•虹口区一模)已知圆O:x2+y2=4.
(1)直线l1
3
x+y-2
3
=0
与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1,y1)、P(x2,y2)是圆O上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.
分析:(1)先求出圆心(0,0)到直线
3
x+y-2
3
=0
的距离,再利用弦长公式求得弦长AB的值.
(2)先求出M1和点M2的坐标,用两点式求直线PM1 和PM2的方程,根据方程求得他们在y轴上的截距m、n的值,计算mn的值,可得结论.
解答:解:(1)由于圆心(0,0)到直线
3
x+y-2
3
=0
的距离d=
3

圆的半径r=2,∴|AB|=2
r2-d2
=2
.…(4分)
(2)由于M(x1,y1)、p(x2,y2)是圆O上的两个动点,则可得 M1
-x1,-y1
M2
x1,-y1
,且
x
2
1
+
y
2
1
=4
x
2
2
+
y
2
2
=4
.…(8分)
根据PM1的方程为
y+y1
y2+y1
=
x+x1
x2+x1
,令x=0求得  y=m=
x1y2-x2y1
x2+x1

根据PM2的方程为:
y+y1
y2+y1
=
x-x1
x2-x1
,令x=0求得 y=n=
-x1y2-x2y1
x2-x1
.…(12分)
m•n=
x
2
2
y
2
1
-
x
2
1
y
2
2
x
2
2
-
x
2
1
=
x
2
2
(4-
x
2
1
)-
x
2
1
(4-
x
2
2
)
x
2
2
-
x
2
1
=4
,显然为定值.…(14分)
点评:本题主要考查直线和园相交的性质,点到直线的距离公式,用两点式求直线的方程、求直线在y轴上的截距,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•虹口区一模)数列{an}满足an=
n   ,当n=2k-1
ak , 当n=2k
,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)关于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虚数单位),则方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)在下面的程序框图中,输出的y是x的函数,记为y=f(x),则f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,则△ABC的面积为
3
或2
3
3
或2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

同步练习册答案