精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=x2-ax+a,(a≠0x∈R),有且仅有唯一的实数x满足f(x)≤0.
(1)在数列{an}中,满足Sn=f(n)-4,求{an}的通项;
(2)在数列{an}中依次取出第1项、第2项、第4项、…第2n-1项…组成新数列{bn},求新数列的前n项和Tn
(3)设数学公式,求数列{cn}的最大和最小值.

解:(1)∵f(x)≤0有且仅有唯一的实数x满足,
∴△=a2-4a=0,∴a=0或a=4.
∵a≠0,∴a=4.
Sn=f(n)-4=n2-4n,
当n=1时,a1=S1=-3,
当n≥2时,an=Sn-Sn-1=2n-5,且对n=1也符合,∴an=2n-5.
(2)bn=2×2n-1-5=2n-5
∴Tn=(2+4+…+2n)-5n
=-5n
=2n+1-5n-2.
(3)===
,c2=-2,
当n≥3时,4(n+1)+-(4n+)=4->0,4n+单调递增,且4n+-16>0,
数列{cn}的最大值为c3=1最小值c2=-2.
分析:(1)根据二次函数的图象与性质,可得出△=a2-4a=0,解出a,再利用数列中an与 Sn关系求出{an}的通项.
(2)由(1)可以求出an=2n-5,从而bn=2×2n-1-5=2n-5,利用公式法及分组法求出Tn
(3)cn=利用4n+单调性解决cn的最值.
点评:本题考查二次函数的图象与性质,数列通项公式求解,数列公式法、分组法求和,数列的函数性质.考查推理论证、计算能力,分类讨论的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案