精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

【答案】
(1)解:设等比数列{an}的公比为q,∵a1=2,a2=4(a3﹣a4),

∴a2=4a2(q﹣q2),化为:4q2﹣4q+1=0,解得q=

∴an= =22﹣n

∴bn=3﹣2log2an=3﹣2(2﹣n)=2n﹣1


(2)解:cn= = =

∴数列{cn}的前n项和Sn= [2+322+5×23+…+(2n﹣1)2n],

∴2Sn= [22+323+…+(2n﹣3)2n+(2n﹣1)2n+1],

∴﹣Sn= =

可得:Sn=


(3)解:不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n(2n﹣1),

令dn=22﹣2n(2n﹣1),则dn+1﹣dn= = = <0,

因此dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.

∵对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,

∴2λ2﹣kλ+2>1,∵λ>0.

∴k<2 ,∵2 ≥2 =2 ,当且仅当λ= 时取等号.

即k的取值范围是


【解析】(1)设等比数列{an}的公比为q,根据a1=2,a2=4(a3﹣a4),可得a2=4a2(q﹣q2),化简解得q.可得an.利用对数的运算性质可得bn.(2)cn= = = .利用错位相减法与等比数列的求和公式即可得出.(3)不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n(2n﹣1),令dn=22﹣2n(2n﹣1),通过作差可得:dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.根据对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,可得2λ2﹣kλ+2>1,根据λ>0.可得k<2 ,再利用基本不等式的性质即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C的方程为: =1
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A(﹣3,2 )的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为 ,{bn}为等差数列,且b1=4,b3=10,则数列 的前n项和Tn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ⑴(a+b+c)(a+b﹣c)=3ab
⑵sinA=2cosBsinC
⑶b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}的前n项和为Sn , 且a2a3=a5 , S4=10S2
(1)求数列{an}的通项公式;
(2)设bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设 =x +y ,则x+y的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数f(x)=sin(3x+B)+cos(3x+B)是偶函数,且b=f( ).
(1)求b.
(2)若a= ,求角C.

查看答案和解析>>

同步练习册答案