精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,上的一点,,且.

(1)求证:平面

(2)若,求点到平面的距离.

【答案】(1)见解析;(2)

【解析】

(1)连接A1B交AB1于E,连接DE,根据中位线定理即可得出DE∥A1C,故而A1C∥平面AB1D1

(2)过B作BF⊥B1D,则可证BF平面AB1D,于是点A1到平面AB1D的距离等于C到平面AB1D的距离,等于B到平面AB1D的距离BF.

(1)如图,

连接,交于点,再连接

据直棱柱性质知,四边形为平行四边形,的中点,

∵当时,的中点,∴

平面平面平面.

(2)如图,在平面中,过点,垂足为

中点,

∴点到平面与点到平面距离相等,

平面∴点到平面的距离等于点到平面的距离,

长为所求,在中,

∴点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果关于x的方程 正实数解有且仅有一个,那么实数a的取值范围为(
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意x∈A,y∈B,(AR,BR)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”;
(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出三个二元函数,请选出所有能够成为关于x、y的广义“距离”的序号:
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③
能够成为关于的x、y的广义“距离”的函数的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有ff(x)-f(y),当x>1时,有f(x)>0。

(1)求f(1)的值;

(2)判断f(x)的单调性并证明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱台ABCDA1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1B1C所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.

查看答案和解析>>

同步练习册答案