精英家教网 > 高中数学 > 题目详情

已知函数的定义域为,若上为增函数,则称 为“一阶比增函数”.
(Ⅰ) 若是“一阶比增函数”,求实数的取值范围;
(Ⅱ) 若是“一阶比增函数”,求证:
(Ⅲ)若是“一阶比增函数”,且有零点,求证:有解.

(Ⅰ)  (Ⅱ)本小题关键是先得到
(Ⅲ)本小题要结合(Ⅱ)的结论来证明。

解析试题分析:解:(I)由题是增函数,
由一次函数性质知
时,上是增函数,
所以 
(Ⅱ)因为是“一阶比增函数”,即上是增函数,
,有
所以                
所以
所以   
所以                              
(Ⅲ)设,其中.
因为是“一阶比增函数”,所以当时,
,满足,记
由(Ⅱ)知,同理
所以一定存在,使得
所以一定有解                             
考点:函数的单调性
点评:证明函数在区间上为增(减)函数的方法是:令,若
),则函数为增(减)函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数。
(1)求实数a的值;
(2)判断函数在R上的单调性并用定义法证明;
(3)若函数的图像经过点,这对任意不等式恒成立,求实数m的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(
证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

同步练习册答案