精英家教网 > 高中数学 > 题目详情
直线l过点P(-4,3)与x轴负方向、y轴正方向分别交于A,B两点,并且满足|AP|:|PB|=3:5,求直线l的方程.
考点:待定系数法求直线方程
专题:直线与圆
分析:设A(a,0),B(0,b),a<0,b>0.由|AP|:|PB|=3:5,可得
AP
=
3
8
AB
,解得a,b即可.
解答: 解:设A(a,0),B(0,b),a<0,b>0.
∵|AP|:|PB|=3:5,
AP
=
3
8
AB

(-4-a,3)=
3
8
(-a,b),
-4-a=
-3a
8
3=
3
8
b

解得a=-
32
5
,b=8.
则直线l的方程为:
x
-
32
5
+
y
8
=1

化为5x-4y+32=0.
∴直线l的方程为5x-4y+32=0.
点评:本题考查了直线的截距式、向量的线性运算,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右顶点作x轴的垂线与C的一条渐近线相交于A.若以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则双曲线C的方程为(  )
A、x2-
y2
3
=1
B、x2-
y2
4
=1
C、
x2
4
-
y2
12
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若α为第三象限角,则下列各式中不成立的是  (  )
A、tanα-sinα<0
B、sinα+cosα<0
C、cosα-tanα<0
D、tanαsinα<0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A+sin2C-sinAsinC=sin2B.
(1)求角B的大小;    
(2)求2cos2A+cos(A-C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学生在22门考试中,所得分数如茎叶图所示,则此学生考试分数的极差与中位数之和为(  )
A、117B、118
C、118.5D、119.5

查看答案和解析>>

科目:高中数学 来源: 题型:

某网店经营的一红消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系,如图中折线所示,每周各项开支合计为20元.
(1)写出周销售量p(件)与销售价格x(元)元的函数关系式;
(2)写出利润周利润y(元)与销售价格x(元)的函数关系式;
(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,则输出的所有实数对(x,y)所对应的点都在函数(  )
A、f(x)=log2(x+1)的图象上
B、f(x)=x2-2x+2的图象上
C、f(x)=
4
3
x的图象上
D、f(x)=2x-1的图象上

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、垂直于同一直线的两条直线互相平行
B、平行四边形在一个平面上的平行投影一定是平行四边形
C、平面截正方体所得的截面图形可能是正六边形
D、锐角三角形在一个平面上的平行投影不可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C角的对边分别是a,b,c,且满足
sin(B-C)
sin(B+C)
=
c+a
c
,则三角形的形状为(  )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、形状不确定

查看答案和解析>>

同步练习册答案