精英家教网 > 高中数学 > 题目详情
11.如图,四棱锥P-ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,证明:EF∥平面PBC.

分析 取DC中点O,连结EO、FO,由已知推导出面EOF∥面PCB,由此能证明EF∥平面PBC.

解答 证明:取DC中点O,连结EO、FO,
∵四棱锥P-ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,
∴EO∥PC,FO∥BC,
∵EO∩FO=O,PC∩BC=C,
∴面EOF∥面PCB,
∵EF?平面EFO,
∴EF∥平面PBC.

点评 本题考查线面平行的证明,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\|{log_3}x|,x>0\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若A>B,则下列关系中不一定正确的是③.
①sinA>sinB②cosA<cosB③sin2A>sin2B④cos2A<cos2B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\frac{1+cos2α}{sin2α}$=$\frac{1}{2}$,则$\frac{1}{sinαcosα}$等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=tan224°,b=sin136°,c=cos310°,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x+$\frac{1}{x-1}$(x>1)在x=a处取最小值,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱柱ABCD-A1B1C1D1中,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1,C,D三点的平面记为α,BB1与α的交点为E,F为BC的中点,G在侧棱AA1上,
(1)证明:E为BB1的中点,
(2)若AG:A1G=3:1,求证:FG∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.画出函数y=2|x+1|+1的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在R上的奇函数,x>0时,f(x)=sin(2x+$\frac{π}{3}$).
(1)求f(x)在R上的解析式;
(2)求f(x)在x∈[-π,0]上的值域.

查看答案和解析>>

同步练习册答案