精英家教网 > 高中数学 > 题目详情

如图,已知正三棱柱A1B1C1-ABC的底面边长为3a,侧棱长为,延长CB到D,使CB=BD.

(1)求证:直线C1B∥平面AB1D;

(2)求平面AB1D与平面ACB所成的二面角的大小;(结果用反三角表示)

(3)求点C1到平面AB1D的距离.

答案:
解析:

  解:(1)如图所示,在正三棱柱中,.∵三点共线,∴

  ∴四边形是平行四边形,∴,又

  ∴

  (2)取AD的中点E,连结BE,B1E.∵

  ∴,∴为平面AB1D与平面ABC所成的二面角的平面角.

  ∵,∴

  ∴平面与平面ACB所成的二面角的大小为

  (3)由(1)知,∴点到平面的距离等于点B到平面的距离.由等体积法易求得点B到平面的距离为,即点到平面的距离等于

  注:用向量方法解的同样给分.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为线段A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高位5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为
13
13
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1,D是AC的中点,C1DC=600,则异面直线AB1与C1D所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)如图,已知正三棱柱ABC-A1B1C1的所有棱长均为a,截面AB1C和A1BC1相交于DE,则三棱锥B-B1DE的体积为
3
48
a3
3
48
a3

查看答案和解析>>

同步练习册答案