精英家教网 > 高中数学 > 题目详情

【题目】随着人们社会责任感与公众意识的不断提高,越来越多的人成为了志愿者.某创业园区对其员工是否为志愿者的情况进行了抽样调查,在随机抽取的10位员工中,有3人是志愿者.
(1)在这10人中随机抽取4人填写调查问卷,求这4人中恰好有1人是志愿者的概率P1
(2)已知该创业园区有1万多名员工,从中随机调查1人是志愿者的概率为 ,那么在该创业园区随机调查4人,求其中恰有1人是志愿者的概率P2
(3)该创业园区的A团队有100位员工,其中有30人是志愿者.若在A团队随机调查4人,则其中恰好有1人是志愿者的概率为P3 . 试根据(Ⅰ)、(Ⅱ)中的P1和P2的值,写出P1 , P2 , P3的大小关系(只写结果,不用说明理由).

【答案】
(1)

解:

所以这4人中恰好有1人是志愿者的概率为


(2)

解:

所以这4人中恰好有1人是志愿者的概率为 0.4116.


(3)

解:由于A团队中,每个人是志愿者的概率为 ,P3= =0.4116,

P1>P3=P2


【解析】由条件利用古典概率计算公式、以及n次独立重复试验中恰好发生k次的概率公式,求得所求事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分)已知椭圆的左焦点为,过的直线交于两点.

)求椭圆的离心率.

)当直线轴垂直时,求线段的长.

)设线段的中点为为坐标原点,直线交椭圆交于两点,是否存在直线使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.

(1)求证:直线CE是⊙O的切线;
(2)求证:AC2=ABAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】石嘴山三中最强大脑社对高中学生的记忆力x和判断力y进行统计分析,得下表数据

x

6

8

10

12

y

2

3

5

6

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ,预测记忆力为9的同学的判断力.

(2)若记忆力增加5个单位,预测判断力增加多少个单位?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,
(1)求B的大小;
(2)若a=2, ,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

2已知,圆轴相交于两点(点在点的右侧).过点任作一条倾斜角不为0的直线与圆相交于两点问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行右边的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则(

A.A+B为a1 , a2 , …,an的和
B. 为a1 , a2 , …,an的算术平均数
C.A和B分别是a1 , a2 , …,an中最大的数和最小的数
D.A和B分别是a1 , a2 , …,an中最小的数和最大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=(
A.(﹣∞,﹣1)
B.(﹣1,
C.﹙ ,3﹚
D.(3,+∞)

查看答案和解析>>

同步练习册答案