精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面ABCDEPD的中点,

求四棱锥的体积V

FPC的中点,求证平面AEF

求证平面PAB

【答案】(1);(2)见解析;(3)见解析.

【解析】

利用直角三角形中的边角关系求出BCACCD,由求得底面的面积,代入体积公式进行运算.

证明,再由平面PAC证明,由,可得,从而得到平面AEF

延长DCAB,设它们交于点N,证明EC是三角形DPN的中位线,可得,从而证明平面PAB

中,

中,

证明:FPC的中点,

平面ABCD平面PAC

PD中点,FPC中点,,则平面AEF

证明:延长DCAB,设它们交于点N,连

ND的中点PD中点,平面PAB平面PAB

平面PAB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离按照北京市行道树修剪规范要求,当树木与原有电力线发生矛盾时,应及时修剪树枝行道树修剪规范中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表

电力线

安全距离单位:

水平距离

垂直距离

330KV

500KV

现有某棵行道树已经自然生长2年,高度为据研究,这种行道树自然生长的时间与它的高度满足关系式

1______;将结果直接填写在答题卡的相应位置上

2如果这棵行道树的正上方有35kV的电力线,该电力线距地面那么这棵行道树自然生长多少年必须修剪?

3假如这棵行道树的正上方有500KV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的S是(

A.10
B.15
C.20
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,焦点在x轴上,椭圆的左顶点坐标为,离心率为

求椭圆E的方程;

过点作直线lEPQ两点,试问:在x轴上是否存在一个定点M,使为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,点在椭圆上,AB分别为椭圆的右顶点与上顶点,过点AB引椭圆C的两条弦AEBF交椭圆于点EF

求椭圆C的方程;

若直线AEBF的斜率互为相反数,

求出直线EF的斜率;

O为直角坐标原点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的序号是: _________

①已知恒成立,若为真命题,则实数的最大值为2

②已知三点共线,则的最小值为11;

③已知是椭圆的为两个焦点,点在椭圆上,则使三角形为直角三角形的点个数4

④在圆内,过点条弦的长度成等差数列,最小弦长为数列的首项,最大弦长为,若公差那么的取值集合为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有5人进入到一列有7节车厢的地铁中,分别求下列情况的概率用数字作最终答案

恰好有5节车厢各有一人;

恰好有2节不相邻的空车厢;

恰好有3节车厢有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,2a2+a3+a5=20,且前10项和S10=100.
(1)求数列{an}的通项公式;
(2)求数列 的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的方程:

(1) 虚轴长为12,离心率为

(2) 焦点在x轴上,顶点间距离为6,渐近线方程为.

查看答案和解析>>

同步练习册答案