【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为, , ,坐标原点为,且线段, , 的长度成等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过点的一条直线交椭圆于点, ,交轴于点,使得线段被点, 三等分,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】已知是圆上任意一点,点的坐标为,直线分别与线段交于两点,且.
(1)求点的轨迹的方程;
(2)直线与轨迹相交于两点,设为坐标原点, ,判断的面积是否为定值?若是,求出定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下关于命题的说法正确的有(选择所有正确命题的序号).
(1)“若,则函数在其定义域内是减函数”是真命题;
(2)命题“若,则”的否命题是“若,则”;
(3)命题“若都是偶函数,则也是偶数”的逆命题为真命题;
(4)命题“若,则”与命题“若,则”等价.
A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;
(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量,求的分布列(概率用算式表示)、数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,三棱柱中,侧面 底面, ,且,O为中点.
(Ⅰ)证明: 平面;
(Ⅱ)求直线与平面所成角的正弦;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:直线PB1⊥平面PAC.
(3)求三棱锥B﹣PAC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com