精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为 ,坐标原点为,且线段 的长度成等差数列.

(Ⅰ)求椭圆的离心率;

(Ⅱ)若过点的一条直线交椭圆于点 ,交轴于点,使得线段被点 三等分,求直线的斜率.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)由线段 的长度成等差数列,以及,可求得离心率; (Ⅱ)设直线的方程为,先研究的情况,根据,求出将直线的方程和椭圆方程联立求出点的横坐标,根据对称性可知直线的斜率.

试题解析:(Ⅰ)依题意有

把上式移项平方并把,代入得

所以椭圆的离心率

(Ⅱ)设直线的方程为,先研究的情况,要使

因此

将直线的方程和椭圆方程联立可得解得

由于点的横坐标为,因此也等于

由对称性可知直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四面体中, 底面的重心, 为线段上一点,且平面,则直线所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆上任意一点,点的坐标为,直线分别与线段交于两点,且.

1)求点的轨迹的方程;

2)直线与轨迹相交于两点,设为坐标原点, ,判断的面积是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下关于命题的说法正确的有(选择所有正确命题的序号).

(1)“若,则函数在其定义域内是减函数”是真命题;

(2)命题“若,则”的否命题是“若,则”;

(3)命题“若都是偶函数,则也是偶数”的逆命题为真命题;

(4)命题“若,则”与命题“若,则”等价.

A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于两点.

1求椭圆的方程;

2若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.

(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量,求的分布列(概率用算式表示)、数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,三棱柱中,侧面 底面 ,且,O中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的正弦;

(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:直线PB1⊥平面PAC.
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

同步练习册答案