精英家教网 > 高中数学 > 题目详情

【题目】设集合A={1,3,a},B={1,a2-a+1},且AB,则a的值为

【答案】-1或2
【解析】AB,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.所以答案是:-1或2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等腰三角形的周长是18,底边长y是一腰长x的函数,则( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿元人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.

(1)选完成关于商品和服务评价的列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量

求对商品和服务全为好评的次数的分布列;

的数学期望和方差.

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值:(其中)关于商品和服务评价的列联表:

对服务好评

对服务不满意

合计

对商品好评

80

对商品不满意

10

合计

200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(1)当每辆车的月租金定为3600时,能租出多少辆车?

(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大收益为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆短轴的两个顶点与右焦点的连线构成等边三角形,直线与圆相切.

(1)求椭圆的方程;

(2)已知椭圆的左顶点的两条直线分别交椭圆两点,且,求证:直线过定点,并求出定点坐标

32的条件下求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1160编号,按编号顺序平均分成20组(18号,916号,。。。,153160号).若第15组应抽出的号码为116,则第一组中用抽签方法确定的号码是( )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是( )

A. 简单的随机抽样 B. 按性别分层抽样 C. 按学段分层抽样 D. 系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥中,,点上,且,面

(1)证明:

(2)在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是( )

A. 三点确定一个平面 B. 依次首尾相接的四条线段必共面

C. 直线与直线外一点确定一个平面 D. 两条直线确定一个平面

查看答案和解析>>

同步练习册答案