精英家教网 > 高中数学 > 题目详情

,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.
(1)求数列,的通项公式;
(2)记=,求数列的前项和.

(1), (3)

解析试题分析:解:(1)由.且
,
中,令 当时,T=,
两式相减得,   .
(2),
,,
=2
=,      
考点:等差数列和数列的求和
点评:解决该试题的关键是能利用等差数列的连个基本量表示得到其通项公式,同时得到两个数列的通项公式,同时结合错位相减法来求和,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,是偶函数。(1)求的值;(2)设对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,且时,
(1)求
(2)求函数的表达式;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求的取值范围;
(2)若在定义域上有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数是定义在上的偶函数,已知当时,.
(1)求函数的解析式;
(2)求函数的单调递增区间;
(3)求在区间上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数是定义在上的偶函数,当时,

(1)求函数的解析式,并画出函数的图像。
(2)根据图像写出的单调区间和值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
求(1)的值域;
(2)记的内角A、B、C的对边长分别为a,b,c,若=1,b=1,c=,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:

查看答案和解析>>

同步练习册答案