【题目】在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.
(1)求证:;
(2)设为的中点,点在线段上,若直线平面,求的长;
(3)求二面角的余弦值.
【答案】(1)见解析;(2)1;(3).
【解析】
(1)利用线面垂直的判定定理,证明BD⊥平面PAC,可得BD⊥PC;(2)取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,证明三角形AMF为直角三角形,即可求AF的长;(3)建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角A﹣PC﹣B的余弦值.
(1)∵是正三角形,是中点,
∴,即.
又∵平面,∴.
又,∴平面.
∴.
(2)取中点,连接,则平面,
又直线平面,EG∩EF=E,所以平面平面,所以
∵为中点,,∴.
∵,,∴,则三角形AMF为直角三角形,又,故
(3)分别以,,为轴,轴,轴建立如图的空间直角坐标系,
∴,,,.
为平面的法向量.
,.
设平面的一个法向量为,
则,即,
令,得,,则平面的一个法向量为,
设二面角的大小为,则.
所以二面角余弦值为.
科目:高中数学 来源: 题型:
【题目】设椭圆C:(a>b>0)的右焦点为F,椭圆C上的两点A,B关于原点对称,且满足,|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为矩形,,均为等边三角形,,.
(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;
(2)在(1)的条件下,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知直线2x﹣y﹣1=0与直线x﹣2y+1=0交于点P.
(Ⅰ)求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)
(Ⅱ)求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,平面ABC,且,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com