精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面是正三角形,的交点恰好是中点,又.

(1)求证:

(2)设的中点,点在线段上,若直线平面,求的长;

(3)求二面角的余弦值.

【答案】(1)见解析;(2)1;(3).

【解析】

1)利用线面垂直的判定定理,证明BD⊥平面PAC,可得BDPC;(2)取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,证明三角形AMF为直角三角形,即可求AF的长;(3)建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角APCB的余弦值.

(1)∵是正三角形,中点,

,即.

又∵平面.

平面.

.

(2)取中点,连接,则平面

又直线平面,EG∩EF=E,所以平面平面,所以

中点,.

,则三角形AMF为直角三角形,又,故

(3)分别以轴,轴,轴建立如图的空间直角坐标系,

.

为平面的法向量.

.

设平面的一个法向量为

,即

,得,则平面的一个法向量为

设二面角的大小为,则.

所以二面角余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆Cab0)的右焦点为F,椭圆C上的两点AB关于原点对称,且满足|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数mR

1)讨论fx)的单调性;

2)若m∈(-10),证明:对任意的x1x2[11-m]4fx1+x25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,.

1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知直线2xy﹣1=0与直线x﹣2y+1=0交于点P

求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)

求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2平面ABCDE分别是AC的中点.

求证:平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O的直径AB=3,点C为⊙O上异于AB的一点,平面ABC,且,点M为线段VB的中点.

1)求证:平面VAC

2)若AB与平面VAC所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案