分析 (1)依题意知2x=4•2-x+3,整理得:22x-3•2x-4=0,解之即可求得x的值;
(2)由f(a+x)-g(-2x)≥3得2a+x-22x≥3,移项可得2a+x≥22x+3⇒2a≥2x+3•2-x,利用基本不等式可得2x+3•2-x≥2$\sqrt{3}$,当且仅当2x=3•2-x,即x=log43时取等号,继而可求得实数a的取值范围.
解答 解:(1)由f(x)=4g(x)+3得2x=4•2-x+3.…2分
整理得:22x-3•2x-4=0,
所以2x=4或2x=-1(舍).…4分
所以x=2.…6分
(2)由f(a+x)-g(-2x)≥3得2a+x-22x≥3…8分
即2a+x≥22x+3⇒2a≥2x+3•2-x…10分
而2x+3•2-x≥2$\sqrt{3}$,当且仅当2x=3•2-x,即x=log43∈[0,4]时取等号,…12分
所以2a≥2$\sqrt{3}$,所以a≥1+$\frac{1}{2}$log23.…14分
点评 本题考查函数恒成立问题,考查等价转化思想与函数与方程思想,考查基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ①S=S+i ②i=i+1 | B. | ①S=S+i2 ②i=i+1 | C. | ①i=i+1 ②S=S+i | D. | ①i=i+1 ②S=S+i2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4\sqrt{5}}{5}$ | B. | 2 | C. | $\frac{16}{5}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com