精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)为(﹣∞,+∞)上的奇函数,则f(0)=

【答案】0
【解析】解:函数f(x)为(﹣∞,+∞)上的奇函数,可得f(﹣x)=﹣f(x),
可得f(0)=﹣f(0),即f(0)=0.
所以答案是:0.
【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“2a>2b”是“log2a>log2b”的( )条件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是(
A.2日和5日
B.5日和6日
C.6日和11日
D.2日和11日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=x2+2x,在使f(x)≥M成立的所有实数M中,我们把M的最大值Mmax叫做函数f(x)=x2+2x的下确界,则对于a∈R,且a≠0,a2﹣4a+6的下确界为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面α与平面β平行的条件可以是(
A.α内有无数条直线都与β平行
B.直线aα,直线bβ,且a∥β,b∥α
C.α内的任何直线都与β平行
D.直线a∥α,a∥β,且直线a不在α内,也不在β内

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.若α>β,则sinα>sinβ
B.命题:“x>1,x2>1”的否定是“x≤1,x2≤1”
C.直线ax+y+2=0与ax﹣y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|x+m≥0},B={x|﹣2<x<4},全集∪=R,且(UA)∩B=,则m的取值范围是(
A.(﹣∞,2)
B.[2,+∞)
C.(2,+∞)
D.(﹣∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2x+1(﹣1≤x≤1)的值域是(
A.[0,2]
B.[1,4]
C.[1,2]
D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象.

查看答案和解析>>

同步练习册答案