精英家教网 > 高中数学 > 题目详情
如图4-1-6,设P(x,y)是曲线x2+(y+4)2=4上任意一点,则的最大值为(    )

图4-1-6

A.+2                      B.

C.5                                D.6

思路解析:利用数形结合,的几何意义为圆x2+(y+4)2=4上的点到定点A(1,1)的距离,它的最大值就是连接AC所得到的直线与圆的交点中较远的P与点A的距离,这可用两点间的距离公式求出.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=
4-m,1≤m≤3
m-3,4≤m≤6
,试求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分5分.

如图4,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数的图像,且图像的最高点为.赛道的后一段为折线段MNP,为保证参赛队员的安全,限定.

(1)求实数的值以及MP两点之间的距离;

(2)联结MP,设,试求出用的解析式;

(3)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分5分.

如图4,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数的图像,且图像的最高点为.赛道的后一段为折线段MNP,为保证参赛队员的安全,限定.

(1)求实数的值以及MP两点之间的距离;

(2)联结MP,设,试求出用的解析式;

(3)应如何设计,才能使折线段MNP最长?

查看答案和解析>>

同步练习册答案