精英家教网 > 高中数学 > 题目详情

【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 的值;

(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;

【答案】(Ⅰ);(Ⅱ) 人 ;(Ⅲ) 估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

【解析】试题分析:()利用频率分布直方图中的矩形面积的和为1的值;()首先计算月均用水量大于等于3吨的频率,80万乘以频率就是所求的人数;()首先大体估计 的区间,再计算区间 的频率和为0.85时,求解的值.

试题解析:(Ⅰ)由频率分布直方图,可得

解得.

(Ⅱ)由频率分布直方图可知,100位居民每人月用水量不低于3吨的人数为

由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为

.

(Ⅲ) 前6组的频率之和为

而前5组的频率之和为

,解得

因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)对任意的x∈R都有f′(x)>f(x)恒成立,则(
A.3f(ln2)>2f(ln3)
B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)
D.3f(ln2)与2f(ln3)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同的四点,这四点在上排列顺次为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)设n≥2,b=1,c=﹣1,证明:fn(x)在区间( )内存在唯一的零点;
(Ⅱ)设n=2,若对任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为边的中点,点分别为线段的中点.将△沿折起到△的位置,使.点为线段上的一点,如图2.

(Ⅰ)求证:

(Ⅱ)线段上是否存在点使得平面?若存在,求出的长,若不存在,请说明理由;

(Ⅲ)当时,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1所表示的图形是焦点在y轴上的双曲线,命题q:复数z=(m﹣3)+(m﹣1)i对应的点在第二象限,又p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的序号是
①函数y=ax(a>0且a≠1)与函数 (a>0且a≠1)的定义域相同;
②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;
③函数 (x≠0)是奇函数且函数 (x≠0)是偶函数;
④若x1是函数f(x)的零点,且m<x1<n,则f(m)f(n)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx2+2kx+1在[﹣3,2]上的最大值为5,则k的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案