精英家教网 > 高中数学 > 题目详情
已知a>0,b∈R,函数f(x)=4ax3-2bx-a+b.当0≤x≤1时,证明:
(1)函数f(x)的最大值力|2a-b|+a;
(2)f(x)+|2a-b|+a≥0.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)求导函数,再分类讨论:当b≤0时,f′(x)>0在0≤x≤1上恒成立,此时最大值为:f(1)=|2a-b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,此时最大值为:f(x)max=max{f(0),f(1)}=|2a-b|﹢a,由此可得结论;
(2)利用分析法,要证f(x)+|2a-b|+a≥0,即证g(x)=-f(x)≤|2a-b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
解答: 证明:(1):f′(x)=12ax2-2b,
当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,此时最大值为:f(x)max=max{f(0),f(1)}=
b-a,b≥2a
3a-b,b<2a
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(2)要证f(x)+|2a-b|+a≥0,即证g(x)=-f(x)≤|2a-b|﹢a.
亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵g(x)=-4ax3+2bx+a-b,
∴令g′(x)=-12ax2+2b=0,解得x=
b
6a

当b≤0时,g′(x)<0在0≤x≤1上恒成立,
此时g(x)的最大值为:g(0)=a-b<3a-b=|2a-b|﹢a;
当b>0时,g′(x)在0≤x≤1上的正负性不能判断,
∴g(x)max=max{g(
b
6a
),g(1)}=max{
3b
4
b
6a
+a-b,b-2a}=
3b
4
b
6a
+a-b,b≤6a
b-2a,b>6a

∴g(x)max≤|2a-b|﹢a;
综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即f(x)+|2a-b|+a≥0在0≤x≤1上恒成立.
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查不等式的证明,综合性,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1,公差大于0的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且b2S2=16,b3S3=72.
(1)求an和bn
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk(k=1,2,3,…),求数列{cn}的前2n+1项和T2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C为其内角,若
1
tanA
1
tanB
1
tanC
依次成等差数列,则角B的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线E:
x2
m
+
y2
m-1
=1,
(1)若曲线E为双曲线,求实数m的取值范围;
(2)已知m=4,A(-1,0)和曲线C:(x-1)2+y2=16,点P是曲线C上任意一点,线段PA的垂直平分线为l,试判断l与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
3
x3-
3
2
x2
+(a+1)x+1,其中a为实数.
(1)已知函数f(x)在x=1处取得极值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设角A,B,C为△ABC三个内角,已知cos(B+C)+sin2
A
2
=
5
4

(1)求角A的大小;
(2)若
AB
AC
=-1,求BC边上的高AD长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的骰子连续抛掷三次,依次得到的三个点数成等差数列的概率为(  )
A、
1
12
B、
1
6
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线kx+y+2=0和以M(-2,1),N(3,2)为端点的线段相交,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
-1,0<x<1
1-
1
x
,x≥1

(1)判断函数f(x)在区间(0,1)和[1,+∞)上的单调性(不必证明);
(2)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(3)若存在实数a,b(1<a<b)使得x∈[a,b]时,f(x)的取值范围是[ma,mb](m≠0),求实数m的取值范围.

查看答案和解析>>

同步练习册答案