精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱底面为正三角形,分别中点

求证:

点,四棱锥体积为求三棱锥表面积

【答案】证明见解析;

【解析】

试题分析:棱柱棱柱,又 ,又四边形正方形,又平面正三角形,又

试题解析: ⑴证明:如图,因为三棱柱棱柱,所以

正三角形中点,所以

……………………3

连接,易知四边形正方形,则

,则因为,所以平面……6

解:因为正三角形,所以

三棱柱直三棱柱,所以

,所以………………………………7

由题可知,所以………………8

……10

三棱锥表面积……12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中x∈[2,+∞).

(1)求f(x)的最小值;

(2)若f(x)>a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两城相距100 km,在两地之间距Ax km处的D地建一核电站给AB两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

(1)求x的取值范围;

(2)把月供电总费用y表示成x的函数;

(3)核电站建在距A城多远,才能使供电费用最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),

(1)求函数单调区间;

(2)当时,

①求函数上的值域;

②求证:,其中.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点O为坐标原点,椭圆的右顶点为A,上顶点为B,过点O且斜率为的直线与直线AB相交M,且

(Ⅰ)求证:a=2b;

(Ⅱ)PQ是圆C:(x-2)2+(y-1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.

(1)若函数f(x)为奇函数,求实数a的值;

(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;

(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式是an.

(1) 判断是不是数列{an}中的一项;

(2) 试判断数列{an}中的项是否都在区间(01)内;

(3) 在区间内有无数列{an}中的项?若有是第几项?若没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

(1)求定义域;

(2)判断的奇偶性,并说明理由;

(3)求使的解集.

查看答案和解析>>

同步练习册答案