分析 (1)设出二次函数,利用已知条件列出方程求解即可.
(2)求出对称轴的函数值,判断对称轴是否在区间[m,m+1],然后分类讨论求解即可.
解答 解:(1)因为函数f(x) 为二次函数,所以设 f(x)=ax2+bx+c(a≠0)
由已知有$\left\{\begin{array}{l}{-\frac{b}{2a}=1}\\{f(0)=c=6}\\{f(-1)=a-b+c=12}\end{array}\right.$ 解得 $\left\{\begin{array}{l}{a=2}\\{b=-4}\\{c=6}\end{array}\right.$
所以 f(x)=2x2-4x+6
(2)因为f(x)在[m,m+1]的值域为[12,22],且f(1)=4 所以1∉[m,m+1],
所以m>1 或 m<0
当m>1 时,f(x) 在[m,m+1]单调递增,
所以由$\left\{\begin{array}{l}{f(m)=2{m}^{2}-4m+6=12}\\{f(m+1)=2(m+1)^{2}-4(m+1)+6=22}\end{array}\right.$,解得m=3;
当m<0 时,f(x) 在[m,m+1]单调递减,
所以由$\left\{\begin{array}{l}{f(m)=2{m}^{2}-4m+6=22}\\{f(m+1)=2(m+1)^{2}-4(m+1)+6=12}\end{array}\right.$,解得 m=-2
综上知,m=3 或 m=-2
点评 本题考查二次函数的性质,解析式的求法以及函数的值域求法,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{2\sqrt{2}}{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{4}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com