精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)若 ,求 在区间 上的最小值;
(2)若 在区间 上有最大值 ,求实数 的值

【答案】
(1)解:若 ,则
函数图像开口向下,对称轴为 ,所以函数 在区间 上是单调递增的,在区间 上是单调递减的,有又

(2)解:对称轴为
时,函数在 在区间 上是单调递减的,则
,即
时,函数 在区间 上是单调递增的,在区间 上是单调递减的,则 ,解得 ,不符合;
时,函数 在区间 上是单调递增的,则
,解得
综上所述,
【解析】本题主要考查函数的最值问题。(1)求函数在闭区间的最值问题,主要要研究函数的单调性,本题主要根据二次函数的图像,判断单调性进而求出最值。(2)根据最值求参数,因为函数的对称轴不确定,所以要对对称轴进行讨论,结合函数图像,化静为动的思想来求解。
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数的图象是一条抛物线,对称轴方程为顶点坐标是;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3 (k+1)x2+3kx+1,其中k∈R.
(1)当k=3时,求函数f(x)在[0,5]上的值域;
(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数 是偶函数,且满足 上的解析式为 ,过点 作斜率为k的直线l , 若直线l与函数 的图象至少有4个公共点,则实数k的取值范围是
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是偶函数.
(1)求 的值;
(2)若函数 没有零点,求 得取值范围;
(3)若函数 的最小值为0,求实数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2是某等轴双曲线的两个焦点,P为该双曲线上一点,若PF1⊥PF2 , 则以F1、F2为焦点且经过点P的椭圆的离心率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用斜二测画法画出图中水平放置的△OAB的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x (m∈Z)为偶函数,且在(0,+∞)上是增函数,则f(2)的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示已知正方体ABCDA1B1C1D1的棱长为a过点B1B1EBD1于点EAE两点之间的距离.

查看答案和解析>>

同步练习册答案