精英家教网 > 高中数学 > 题目详情
椭圆的离心率是       (     )
A.B.C.D.
A
解:因为,因此离心率为e=,选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

.经过点M(1,1)作直线l交椭圆于A、B两点,且M为AB的中点,则直线l方程为                       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.
⑴求椭圆的方程;
⑵设是椭圆上的三点(异于椭圆顶点),且存在锐角,使
①试求直线的斜率的乘积;
②试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆(a>b>0)的左右焦点分别为F1,F2,P是椭圆上一点。PF1F2为以F2P为底边的等腰三角形,当60°<PF1F2120°,则该椭圆的离心率的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点,曲线上的动点满足,直线与曲线交于另一点
(Ⅰ)求曲线的方程;
(Ⅱ)设,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为F1和F2 ,以F1、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在△ABC中,B、C坐标分别为B (0,-4),C (0,4),且,顶点A
的轨迹方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,椭圆的右焦点为,右准线为

(1)求到点和直线的距离相等的点的轨迹方程。
(2)过点作直线交椭圆于点,又直线于点,若
求线段的长;
(3)已知点的坐标为,直线交直线于点,且和椭圆的一个交点为点,是否存在实数,使得,若存在,求出实数;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案