精英家教网 > 高中数学 > 题目详情

【题目】已知点A是双曲线的右顶点,若存在过点的直线与双曲线的渐近线交于一点M,使得是以点M为直角顶点的直角三角形,则双曲线的离心率( )

A.存在最大值B.存在最大值

C.存在最小值D.存在最小值

【答案】B

【解析】

根据题意,写出其右顶点的坐标,写出双曲线的渐近线方程,取,设出点M的坐标,从而得到,根据题意可得,从而得到,进一步整理得,根据方程有解,利用判别式大于等于零,求得,进一步求得其离心率的范围,得到结果.

双曲线的右顶点

双曲线的渐近线方程为

不妨取

,则.

若存在过的直线与双曲线的渐近线交于一点

使得是以为直角顶点的直角三角形,

,即

整理可得

由题意可知此方程必有解,

则判别式,得

,解得

所以离心率存在最大值

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥EABCD的侧棱DE与四棱锥FABCD的侧棱BF都与底面ABCD垂直,//.

1)证明://平面BCE.

2)设平面ABF与平面CDF所成的二面角为θ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:

付款方式

1

2

3

4

5

频数

40

20


10


已知分3期付款的频率为0.24s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.

(Ⅰ)求上表中的值;

(Ⅱ)若以频率作为概率,求事件购买该品牌汽车的3位顾客中,至多有一位采用3期付款的概率;

)求Y的分布列及数学期望EY

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“红灯停,绿灯行”,这是我们每个人都应该也必须遵守的交通规则.凑齐一拨人就过马路﹣﹣不看交通信号灯、随意穿行交叉路口的“中国式过马路”不仅不文明而且存在很大的交通安全隐患.一座城市是否存在“中国式过马路”是衡量这座城市文明程度的重要指标.某调查机构为了了解路人对“中国式过马路”的态度,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

男性

女性

合计

反感

10

不反感

8

合计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此列联表数据判断是否有95%的把握认为反感“中国式过马路”与性别有关?

(2)若从这30人中的女性路人中随机抽取2人参加一项活动,记反感“中国式过马路”的人数为X,求X的分布列及其数学期望.

附:,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,为等腰直角三角形,,设点中点,点中点,点上一点,且

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

函数的最大值为1

的否定是

为锐角三角形,则有

函数在区间内单调递增的充分必要条件.

其中错误的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

1)经计算估计这组数据的中位数;

2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.

3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

A:所有芒果以10/千克收购;

B:对质量低于250克的芒果以2/个收购,高于或等于250克的以3/个收购,通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,长轴长为4,且过点.

1)求椭圆C的方程;

2)过的直线l交椭圆C两点,过Ax轴的垂线交椭圆C与另一点QQ不与重合).的外心为G,求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

同步练习册答案