£¨1£©ÒÑÖªÖ±ÏßC1£º
x=1+tcos¦Á
y=tsin¦Á
£¨tΪ²ÎÊý£©£¬C2£º
x=cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©µ±¦Á=
¦Ð
3
ʱ£¬ÇóC1ÓëC2µÄ½»µã×ø±ê£»
£¨¢ò£©¹ý×ø±êÔ­µãO×öC1µÄ´¹Ïߣ¬´¹×ãΪA£¬PΪOAÖе㣬µ±¦Á±ä»¯Ê±£¬ÇóPµãµÄ¹ì¼£µÄ²ÎÊý·½³Ì£®
£¨2£©ÒÑÖªÕýʵÊýa¡¢b¡¢cÂú×ãa2+4b2+c2=3£®
£¨I£©Çóa+2b+cµÄ×î´óÖµ£»
£¨II£©Èô²»µÈʽ|x-5|-|x-1|¡Ýa+2b+cºã³ÉÁ¢£¬ÇóʵÊýxµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©£¨¢ñ£©·Ö±ðÏûÈ¥Ö±ÏßC1¡¢ÇúÏßC2²ÎÊý£¬ZÔڰѦÁ´úÈëÁªÁ¢¼´¿ÉµÃ³ö£»
£¨¢ò£©ÓÉÖ±ÏßOA¡ÍÖ±ÏßC1£¬¿ÉµÃ³öÖ±ÏßOAµÄ·½³Ì£¬ÓëÖ±ÏßC1µÄ·½³ÌÁªÁ¢¼´¿ÉÇó³öµãAµÄ×ø±ê£¬ÔÙÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉÇó³öÏ߶ÎOAµÄÖеãPµÄ²ÎÊý·½³Ì£®
£¨2£©£¨¢ñ£©ÀûÓÿÂÎ÷²»µÈʽ¼´¿ÉÇó³ö£»
£¨¢ò£©¶ÔÓÚÂú×ãÌõ¼þµÄÕýʵÊýa¡¢b¡¢c²»µÈʽ|x-5|-|x-1|¡Ýa+2b+cºã³ÉÁ¢?|x-5|-|x-1|¡Ý£¨a+2b+c£©max£¬ÀûÓ㨢ñ£©µÄ½áÂÛ£¬ÔÙ½â³ö¾ø¶ÔÖµµÄ²»µÈʽ¼´¿ÉµÃ³öxµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©£¨¢ñ£©ÓÉÖ±ÏßC1£º
x=1+tcos¦Á
y=tsin¦Á
ÏûÈ¥²ÎÊýtµÃy=tan¦Á£¨x-1£©£¬µ±¦Á=
¦Ð
3
ʱ£¬y=
3
(x-1)
£¬
ÓÉÇúÏßC2£º
x=cos¦È
y=sin¦È
ÏûÈ¥²ÎÊý¦ÈµÃx2+y2=1£¬
ÁªÁ¢
y=
3
(x-1)
x2+y2=1
£¬ÏûÈ¥y»¯Îª2x2-3x+1=0£¬½âµÃx=1»ò
1
2
£¬
·Ö±ð´úÈëy=
3
(x-1)
½âµÃy=0£¬-
3
2
£¬¡à
x=1
y=0
»ò
x=
1
2
y=-
3
2
£¬
¡àC1ÓëC2µÄ½»µã×ø±êΪ£¨1£¬0£©£¬(
1
2
£¬-
3
2
)
£»
£¨¢ò£©¡ßOA¡ÍÖ±ÏßC1£¬¡àÖ±ÏßOAµÄ·½³ÌΪy=-
1
tan¦Á
x
£¬
ÁªÁ¢
y=-
x
tanx
y=tan¦Á(x-1)
½âµÃ
x=sin2¦Á
y=-sin¦Ácos¦Á
£®
µ±¦Áʱ£¬ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃµãPµÄ²ÎÊý·½³ÌΪ
x=
1
2
sin2¦Á
y=-
1
2
sin¦Ácos¦Á
£¨¦ÁΪ²ÎÊý£©£®
£¨2£©£¨I£©ÓÉ¿ÂÎ÷²»µÈʽµÃ£º£¨a2+4b2+c2£©£¨1+1+1£©¡Ý£¨a+2b+c£©2
ÓÖa¡¢b¡¢cΪÕýʵÊý£¬¡àa+2b+c¡Ü3£®
µ±ÇÒ½öµ±a=2b=c£¬¼´a=c=1£¬b=
1
2
ʱȡµÈºÅ£®
¡à£¨a+2b+c£©max=3£®  
£¨II£©Èô¶ÔÓÚÂú×ãÌõ¼þµÄÕýʵÊýa¡¢b¡¢c²»µÈʽ|x-5|-|x-1|¡Ýa+2b+cºã³ÉÁ¢£®
Ôò|x-5|-|x-1|¡Ý£¨a+2b+c£©max£¬
¼´|x-5|-|x-1|¡Ý3£®
¼Çf£¨x£©=|x-5|-|x-1|=
4£¬µ±x£¼1ʱ
-2x+6£¬µ±1¡Üx¡Ü5ʱ
-4£¬µ±x£¾5ʱ
£¬
×÷º¯ÊýµÄͼÏóÈçͼËùʾ£º
ÓÉ-2x+6=3£¬µÃx=
3
2
£¬
ÓÉͼÏóÖª£¬ÊµÊýxÂú×ãµÄÇø¼äΪ(-¡Þ£¬
3
2
]
£®
µãÆÀ£ºÊìÁ·ÕÆÎհѲÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨¡¢Ï໥´¹Ö±µÄÖ±ÏßµÄбÂÊÖ®¼äµÄ¹Øϵ¡¢Öеã×ø±ê¹«Ê½¡¢¿ÂÎ÷²»µÈʽ¼°ºã³ÉÁ¢ÎÊÌâµÄµÈ¼Ûת»¯¡¢½â¾ø¶ÔÖµ²»µÈʽµÄ·ÖÀàÌÖÂÛ·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ½¹µãºÍÉ϶¥µã·Ö±ðΪF1¡¢F2¡¢B£¬ÎÒÃdzơ÷F1BF2ΪÍÖÔ²CµÄÌØÕ÷Èý½ÇÐΣ®Èç¹ûÁ½¸öÍÖÔ²µÄÌØÕ÷Èý½ÇÐÎÊÇÏàËƵģ¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÊÇ¡°ÏàËÆÍÖÔ²¡±£¬ÇÒÈý½ÇÐεÄÏàËƱȼ´ÎªÍÖÔ²µÄÏàËƱȣ®
£¨1£©ÒÑÖªÍÖÔ²C1£º
x2
4
+y2=1ºÍC2£º
x2
16
+
y2
4
=1£¬ÅжÏC2ÓëC1ÊÇ·ñÏàËÆ£¬Èç¹ûÏàËÆÔòÇó³öC2ÓëC1µÄÏàËƱȣ¬Èô²»ÏàËÆÇë˵Ã÷ÀíÓÉ£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=x+1£¬ÔÚÍÖÔ²CbÉÏÊÇ·ñ´æÔÚÁ½µãM¡¢N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬Èô´æÔÚ£¬ÔòÇó³öº¯Êýf£¨b£©=|MN|µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±ÏßC1£º
x=1+
4
5
t
y=-1-
3
4
t
£¨tΪ²ÎÊý£©£¬ÇúÏßC2£º¦Ñ=
2
cos£¨¦È+
¦Ð
4
£©£®
£¨¢ñ£©ÇóÖ±ÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóÖ±ÏßC1±»ÇúÏßC2Ëù½ØµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßC1£º
x=1+tcos¦Á
y=ttan¦Á
£¨tΪ²ÎÊý£©£¬Ô²C2£º
x=cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£®µ±¦Á=
¦Ð
3
ʱ£¬½«Ö±ÏߺÍÇúÏߵIJÎÊý·½³Ìת»¯³ÉÆÕͨ·½³Ì²¢£¬ÇóC1ÓëC2µÄ½»µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×÷£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£®×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«Ñ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4Ò»2£º¾ØÕóÓë±ä»»
Éè¾ØÕóMËù¶ÔÓ¦µÄ±ä»»ÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìËõ±ä»»£®
£¨¢ñ£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨¢ò£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²
x2
4
+
y2
9
=1
ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
£¨2£©Ñ¡ÐÞ4Ò»4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßC1£º
x=1+tcos¦Á
y=tsin¦Á
£¨tΪ²ÎÊý£©£¬C2£º
x=cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©µ±¦Á=
¦Ð
3
ʱ£¬ÇóC1ÓëC2µÄ½»µã×ø±ê£»
£¨¢ò£©¹ý×ø±êÔ­µãO×öC1µÄ´¹Ïߣ¬´¹×ãΪA£¬PΪOAÖе㣬µ±¦Á±ä»¯Ê±£¬ÇóPµãµÄ¹ì¼£µÄ²ÎÊý·½³Ì£®
£¨3£©Ñ¡ÐÞ4Ò»5£º²»µÈʽѡ½²
ÒÑÖªa£¬b£¬c¾ùΪÕýʵÊý£¬ÇÒa+b+c=1£®Çó
4a+1
+
4b+1
+
4c+1
µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸