精英家教网 > 高中数学 > 题目详情

【题目】P为圆C1:x2+y2=9上任意一点,Q为圆C2:x2+y2=25上任意一点,PQ中点组成的区域为M,在C2内部任取一点,则该点落在区域M上的概率为(
A.
B.
C.
D.

【答案】B
【解析】解:【法1】设Q(x0 , y0),中点M(x,y),则P(2x﹣x0 , 2y﹣y0)代入x2+y2=9, 得(2x﹣x02+(2y﹣y02=9,
化简得:(x﹣ 2+(y﹣ 2=
又x02+y02=25表示以原点为圆心半径为5的圆,
故易知M轨迹是在以( )为圆心,
为半径的圆绕原点一周所形成的图形,
即在以原点为圆心,宽度为3的圆环带上,
即应有x2+y2=r2(1≤r≤4),
那么在C2内部任取一点落在M内的概率为
故选B.
【考点精析】通过灵活运用几何概型,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了绿化城市,要在矩形区域ABCD内建一个矩形草坪,如图所示,另外,△AEF内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+mx+1=0有两个不相等的实根;
命题q:函数f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定义域为R,
若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是奇函数,则(
A. ,且f(x)为增函数
B.a=﹣1,且f(x)为增函数
C. ,且f(x)为减函数
D.a=﹣1,且f(x)为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+sinx,(﹣1<x<1),若f(x2)+f(﹣x)>0,则实数x的取值范围是:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=﹣ x3+4x﹣1在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)设A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 证明: <f′( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.

查看答案和解析>>

同步练习册答案