精英家教网 > 高中数学 > 题目详情
14.执行如图所示的程序框图,如果输入的N=5,那么输出的S=(  )
A.$\frac{10}{9}$B.$\frac{16}{9}$C.$\frac{8}{5}$D.$\frac{20}{11}$

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:∵输入N的值为5,
第一次执行循环体后:p=1,S=1,k=2,满足继续循环的条件;
再次执行循环体后:p=3,S=$\frac{4}{3}$,k=3,满足继续循环的条件;
再次执行循环体后:p=6,S=$\frac{3}{2}$,k=4,满足继续循环的条件;
再次执行循环体后:p=10,S=$\frac{8}{5}$,k=5,不满足继续循环的条件;
故输出的S值为$\frac{8}{5}$,
故选:C

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f($\frac{x}{y}$)=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)求f(x)的单调性并证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合{A}={x|y=$\sqrt{6+x-{x^2}$},B={x|y=log2(2-x)},则A∩(∁RB)=(  )
A.[-2,3]B.[-2,2]C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{3}}{2}$,椭圆C与y轴交于点M,△MF1F2的面积为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设A、B是椭圆C的左、右顶点,P、Q是椭圆上的两点,且满足kAP=2kQB,求证直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在△ABC中,已知BC=2,AC=4,sinB=$\frac{\sqrt{15}}{4}$,sinC=$\frac{3\sqrt{15}}{16}$,求BC边上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m∈(-∞,-2)”是“方程$\frac{{x}^{2}}{m-5}$+$\frac{{y}^{2}}{{m}^{2}-m-6}$=1表示的图形为双曲线”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是(  )
A.$f(2)<f(-\frac{3}{2})<f(-1)$B.$f(-1)<f(-\frac{3}{2})<f(2)$C.$f(2)<f(-1)<f(-\frac{3}{2})$D.$f(-\frac{3}{2})<f(-1)<f(2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知${(\root{3}{x}+{x^2})^{2n}}$的展开式的二项式系数和比(3x-1)n的展开式的二项式系数和大992.求${(2x-\frac{1}{x})^{2n}}$的展开式中:
(Ⅰ)二项式系数最大的项.
(Ⅱ)求含$\frac{1}{x^2}$的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列{an}中,a2=9,a5=33,则该数列的前n项和为4n2-3n.

查看答案和解析>>

同步练习册答案