【题目】已知函数.
(1)求证:函数在内单调递增;
(2)记为函数的反函数.若关于的方程在上有解,求的取值范围;
(3)若对于恒成立,求的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线l与椭圆C交于P,Q两点,且点M满足.
(1)若点,求直线的方程;
(2)若直线l过点且不与x轴重合,过点M作垂直于l的直线与y轴交于点,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:,,.
(1)求的值;
(2)设,求证:数列是等比数列,并求出其通项公式;
(3)对任意的,,在数列中是否存在连续的项构成等差数列?若存在,写出这项,并证明这项构成等差数列:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两城市和相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065;
(1)将表示成的函数;
(2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)设是的反函数.当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,().
(1)计算,,,,并求数列的通项公式;
(2)若数列满足,求证:数列是等比数列;
(3)由数列的项组成一个新数列:,,,,,设为数列的前项和,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为实数),.
(1)若函数的最小值是,求的解析式;
(2)在(1)的条件下,在区间上恒成立,试求的取值范围;
(3)若,为偶函数,实数,满足,,定义函数,试判断值的正负,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com