精英家教网 > 高中数学 > 题目详情

(09年崇文区期末理)(14分)

如图,四面体ABCD中,OBD的中点,ΔABD和ΔBCD均为等边三角形,

AB =2 ,  AC =.   

(I)求证:平面BCD;                                   

(II)求二面角A-BC- D的大小;                                                        

(III)求O点到平面ACD的距离.                                                      

解析:解法一:

证明:连结OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   -------------------------------------------------------------3分

             

平面.  ---------------------------------------------------------------------------4分

       (II)过O作,连结AE,

       ,

∴AE在平面BCD上的射影为OE.

.  -----------------------------------------7分

中,,,,    ------------------8分

       ∴

       ∴二面角A-BC-D的大小为.   ---------------------------------------------------9分

       (III)解:设点O到平面ACD的距离为

 ∴

中, ,

            

         ∴点O到平面ACD的距离为.-----------------------------------------------------14分

        解法二:

       (I)同解法一.

       (II)解:以O为原点,如图建立空间直角坐标系,

则       -------------------------------------------5分

      

.  -------------------------------------------------6分

设平面ABC的法向量

.----------------------------------------8分

夹角为

 ∴二面角A-BC-D的大小为.  -----------------------------------------9分

       (III)解:设平面ACD的法向量为,又 

       .   -----------------------------------11分

夹角为

   则     ----------------------------------------12分

       设O 到平面ACD的距离为h

∴O到平面ACD的距离为.  -----------------------------------------------14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年崇文区期末理)(14分)

 已知椭圆的中心在坐标原点,左顶点,离心率为右焦点,过焦点的直线交椭圆两点(不同于点).

(Ⅰ)求椭圆的方程;

(Ⅱ)当时,求直线PQ的方程;

(Ⅲ)判断能否成为等边三角形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年崇文区期末理)(13分)

   射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为,第二枪命中率为, 该运动员如进行2轮比赛.

(Ⅰ)求该运动员得4分的概率为多少?

(Ⅱ)若该运动员所得分数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年崇文区期末理)(13分)

已知函数的一个极值点.

(Ⅰ)求的单调递增区间;

(Ⅱ)若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010届高三数学每周精析精练:概率 题型:解答题

 (09年崇文区期末理)(13分)

   射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为,第二枪命中率为, 该运动员如进行2轮比赛.

(Ⅰ)求该运动员得4分的概率为多少?

(Ⅱ)若该运动员所得分数为,求的分布列及数学期望.

 

 

 

 

 

查看答案和解析>>

同步练习册答案