精英家教网 > 高中数学 > 题目详情
已知命题p:“若m≤0,则x2-2x+m=0有实数解”的逆命题;命题q:“若函数f(x)=lg(x2+2x+a)的值域为R,则a>1”.以下四个结论:
①p是真命题;
②p∧q是假命题;
③p∨q是假命题;
④¬q为假命题.
其中所有正确结论的序号为
②③
②③
分析:根据二次方程根与△的关系及四种命题的定义,可判断命题p的真假;根据对数函数和二次函数的图象和性质,可判断命题q的真假;进而由复合命题真假判断的真值表分析四个结论的正误,可得答案.
解答:解:“若m≤0,则x2-2x+m=0有实数解”的逆命题为“若x2-2x+m=0有实数解,则m≤0”
由x2-2x+m=0有实数解,则△=4-4m≥0得,m≤1,此时m≤0不一定成立
故命题p为假命题,即命题p为假命题,
函数f(x)=lg(x2+2x+a)的值域为R,则a≤1,故命题q为假命题,
故①“p是真命题”错误;②“p∧q是假命题”正确;③“p∨q是假命题”正确;④“¬q为假命题”错误.
故正确结论的序号为②③
故答案为:②③
点评:本题以命题的真假判断为载体考查了四种命题,二次方程,对数函数,二次函数的图象和性质,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程
x2
16-m
+
y2
m-4
=1
表示焦点在x轴上的椭圆;命题q:点(m,4)在圆(x-10)2+(y-1)2=13内.若p∨q为真命题,p∧q为假命题,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)已知命题p:夹角为m的单位向量a,b使|a-b|>l,命题q:函数f(x)=msin(mx)的导函数为f′(x),若?xo∈R,f′(xo)≥
4π25
.设符合p∧q为真的实数m的取值的集合为A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在实数m使m+1≤0,命题q:对任意x∈R都有x2+mx+1>0,若p且q为假命题,则实数m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x-m|+|x-1|>1的解集为R,命题q:f(x)=log(3+m)x是(0,+∞)上的增函数.若“p且q”是假命题,“p或q”是真命题,则实数m的取值范围是
(-3,-2)∪[0,2]
(-3,-2)∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x|≥m的解集是R,命题q:f(x)=
2-mx
在区间(0,+∞) 上是减函数,若命题“p∨q”为真,则实数m的范围是
 

查看答案和解析>>

同步练习册答案