精英家教网 > 高中数学 > 题目详情

已知函数

(1)当时,求函数的最大值;

(2)若函数没有零点,求实数的取值范围;

 

【答案】

(1) ;(2).

【解析】

试题分析:(1)通过对函数求导,判函数的单调性,可求解函数的最大值,需注意解题时要先写出函数的定义域,切记“定义域优先”原则;(2) 将的零点问题转化为图象交点个数问题,注意函数的图象恒过定点,由图象知当直线的斜率为时,直线与图象没有交点,当时,求出函数的最大值,让最大值小于零即可说明函数没有零点.

试题解析:(1)当时,       2分

定义域为,令,      

 ∵当,当

内是增函数,上是减函数

∴当时,取最大值        5分

(2)①当,函数图象与函数图象有公共点,

∴函数有零点,不合要求;                             7分

②当时,       8分

,∵

内是增函数,上是减函数,  10分

的最大值是

∵函数没有零点,∴,      11分

因此,若函数没有零点,则实数的取值范围    12分

考点:1.利用导数求函数的最值;2.函数与方程思想.3.数形结合思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数,其中    

(1)      当满足什么条件时,取得极值?

(2)      已知,且在区间上单调递增,试用表示出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(1)当a=3时,求fx)的零点;

(2)求函数yf (x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省深圳市宝安区高三上学期调研考试文科数学试卷(解析版) 题型:解答题

已知函数.

(1)当为何值时,取得最大值,并求出其最大值;

(2)若,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三5月高考三轮模拟文科数学试卷(解析版) 题型:解答题

已知函数

(1)当时,证明:对

(2)若,且存在单调递减区间,求的取值范围;

(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

已知函数

   (1)当  时,求函数  的最小值;

   (2)当  时,讨论函数  的单调性;

   (3)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案