精英家教网 > 高中数学 > 题目详情
有如下结论:“圆x2+y2=r2上一点P(x0,y0)处的切线方程为x0y+y0y=r2”,类比也有结论:“椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点P(x0,y0)处的切线方程为
x0x
a2
+
y0y
b2
=1”,过椭圆C:
x2
2
+y2=1
的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.直线AB恒过一定点
(1,0)
(1,0)
分析:设出M的坐标,及两个切点的坐标,由椭圆方程写出切线方程,把M的坐标代入切线方程,得到切点所在的直线方程,即可得到结论.
解答:解:设M(2,t)(t∈R),A(x1,y1),B(x2,y2),则MA的方程为
x1x
2
+y1y=1

∵点M在MA上,∴x1+ty1=1①,同理可得x2+ty2=1 ②
由①②知AB的方程为 x+ty=1,即x-1=ty
∴直线AB恒过一定点(1,0)
故答案为(1,0)
点评:本题考查类比推理,考查椭圆的切线方程,考查直线恒过定点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有如下结论:“圆x2+y2=r2上一点P(x0,y0)处的切线方程为x0y+y0y=r2”,类比也有结论:“椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点P(x0y0)
处的切线方程为
x
 
0
x
a2
+
y0y
b2
=1
”,过椭圆C:
x2
4
+y2=1
的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.
(1)求证:直线AB恒过一定点;
(2)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的两焦点分别为F1、F2|F1F2|=4
2
,离心率e=
2
2
3
.过直线l:x=
a2
c
上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆
x2
a2
+
y2
b2
=1
(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点(2
2
,0
);
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源:2010年北京市顺义区高考数学一模试卷(理科)(解析版) 题型:解答题

已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x,y)处的切线方程为:xx+yy=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x,y)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点();
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源:2010年北京市一模试卷及高频考点透析:推理与证明 几何证明选讲(解析版) 题型:解答题

已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x,y)处的切线方程为:xx+yy=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x,y)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点();
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

同步练习册答案