精英家教网 > 高中数学 > 题目详情
5.△ABC中,D是BC上的点,AD平分∠BAC,△ABD的面积是△ADC面积的2倍,求$\frac{sin∠B}{sin∠C}$.

分析 过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=$\frac{AD×sin∠BAD}{BD}$,sin∠C=$\frac{AD×sin∠DAC}{DC}$,从而得解$\frac{sin∠B}{sin∠C}$=$\frac{DC}{BD}$=$\frac{1}{2}$.

解答 解:如图,过A作AE⊥BC于E,
∵$\frac{{S}_{△ABD}}{{S}_{△ADC}}$=$\frac{\frac{1}{2}BD×AE}{\frac{1}{2}DC×AE}$=2
∴BD=2DC,
∵AD平分∠BAC
∴∠BAD=∠DAC
在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠B}$,∴sin∠B=$\frac{AD×sin∠BAD}{BD}$
在△ADC中,$\frac{DC}{sin∠DAC}$=$\frac{AD}{sin∠C}$,∴sin∠C=$\frac{AD×sin∠DAC}{DC}$;
∴$\frac{sin∠B}{sin∠C}$=$\frac{DC}{BD}$=$\frac{1}{2}$.…6分

点评 本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若A={x|x>2},B={x|x≤3},求A∩B,A∪B并用数轴表示.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域:y=$\frac{2x+1}{x-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|-2≤x≤4},集合B={x|x>m}.
(1)若A∩B=A,求实数m的取值范围.
(2)若A∩B≠∅,且A∩B≠A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\frac{{2}^{x}}{{2}^{x}+1}$的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1)已知x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为16
(2)已知a>0,b>0,a+b=2,则y=$\frac{1}{a}$+$\frac{4}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=3cos(2x-$\frac{π}{4}$)的单调递增区间是[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,点集K={(x,y)|(|x|+|3y|-6)(|3x|+|y|-6)≤0}所对应的平面区域的面积为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求证:“a$<\frac{1}{4}$”是“方程x2+x+a=0有实数解”的充分不必要条件.

查看答案和解析>>

同步练习册答案