精英家教网 > 高中数学 > 题目详情
已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.
1)f(2)=0;   2) 见解析;
3)存在实数a∈(1,9),使得对任意的θ∈(0,π)恒成立.

试题分析:(1)根据对任意的正实数x,y都有均有f(x+1)+f(y+1)=f(xy+1),令x=1,y=1,即可求出f(2)的值;
(2)由于函数没有具体解析式,要证其在(1,+∞)上为增函数,只能从条件;②对任意的x>2均有f(x)>0和条件③对任意的x>0,y>0,均有f(x+1)+f(y+1)=f(xy+1)入手,取代入条件③,整理变形后借助于条件②可证出结论.
(3)令x=2,y=2,代入求得f(5),令x=2,y=4,代入求得f(9),
,可得,根据条件②判断函数的单调性,根据已知条件把f(cos2θ+asinθ)<3化为cos2θ+asinθ<或1<cos2θ+asinθ<9,对任意的θ∈(0,π)恒成立,换元和分离参数即可求得a的范围..
1)令X=Y=1得f(2)+f(2)=f(2),∴f(2)=0…………(2分)
2) 任取X1>1,X2>1,X2>X1则有  从而

∴f(x)在(1,+∞)上单调递增……………(8分)
3)因为f(x)为奇函数,且在(1,+∞)上单调递增,令X=Y=2,得f(5)=f(3)+f(3)=2,再令X=2,Y=4,得f(9)=f(3)+f(5)=3,
因为f(x)为奇函数,所以,于是f(x)<3的解集为;
(-∞,-)∪(1,9),于是问题转化为是否存在实数a,使对任意的θ∈(0,π)恒成立,令sinθ=t,则t∈(0,1]于是恒成立等价于恒成立.即恒成立,当t→0时,,故不存在实数a使对任意的
θ∈(0,π)恒成立.
1<cos2θ+asinθ<9恒成立等价于恒成立,得a>1,
t2-at+8>0,t∈(0,1]等价于在(0,1]单调递减,于是g(t)min=9,故a<9 于是存在a∈(1,9)使1<cos2θ+asinθ<9 对任意的θ∈(0,π)恒成立.
综上知,存在实数a∈(1,9),使得对任意的θ∈(0,π)恒成立.……………………(14分).
点评:此题是个难题,考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.特别是问题(3)的设问形式,增加了题目的难度,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)如果函数的定义域为R求实数m的取值范围。
(2)如果函数的值域为R求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是奇函数,则a+b=         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x+1)=3x+2,则f(x)的解析式为_________  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列对应关系中,是的映射的有        .

的倒数;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于实数,符号表示不超过的最大整数,例如,定义函数,则下列命题中正确的是(      )
A.B.方程有且仅有一个解
C.函数是周期函数D.函数是增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商品的市场日需求量和日产量均为价格的函数,且
,日成本C关于日产量的关系为
(1)当时的价格为均衡价格,求均衡价格
(2)当时日利润最大,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数
(1)当的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线的方程是,曲线的方程是
,给出下列结论:
①曲线恒过定点;             ②曲线的图形是一个圆;
时,有一个公共点; ④若时,则必无公共点。
其中正确结论的序号是_____________。

查看答案和解析>>

同步练习册答案