精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(-1,3).
(1)若函数g(x)=x,f(x)在区间(-∞,
a3
)内单调递减,求a的取值范围;
(2)当a=-1时,证明方程f(x)=2x3-1仅有一个实数根.
(3)当x∈[0,1]时,试讨论|f(x)+(2a-1)x+3a+1|≤3成立的充要条件.
分析:(1)依据不等式f(x)>2x的解集为(-1,3),可设函数f(x)-2x的解析式为(x)-2x=a(x+1)(x-3),得出f(x)的解析式.根据若函数g(x)区间 (-∞,
a
3
)
内单调递减,通过导函数g′(x)<0,求a的取值范围.
(2)若方程f(x)=2x3-1仅有一个实数根,我们可以构造函数h(x)=2x3+x2-4x-4,则函数h(x)=2x3+x2-4x-4无极值点,或两个极值点的函数值同号,求出函数的导函数,分析后,即可得到结论;
(3)构造函数r(x)=f(x)+(2a-1)x+3a+1,根据二次函数的图象与性质,分析后构造关于a的不等式组,即可求出|f(x)+(2a-1)x+3a+1|≤3成立的充要条件.
解答:解:(1)∵f(x)-2x>0的解集为(-1,3),
∴可设f(x)-2x=a(x+1)(x-3),且a<0,
因而f(x)=a(x+1)(x-3)+2x=ax2+2(1-a)x-3a①
g(x)=xf(x)=ax3+2(1-a)x2-3ax,
∵g(x)在区间 (-∞,
a
3
)
内单调递减,
∴g′(x)=3ax2+4(1-a)x-3a在 (-∞,
a
3
)
上的函数值非正,
由于a<0,对称轴 x=
2(a-1)
3a
>0

g/(
a
3
)=
a3
3
+
4
3
a(1-a)-3a≤0

注意到a<0,∴a2+4(1-a)-9≥0,
得a≤-1或a≥5(舍去)
故所求a的取值范围是(-∞,-1].
(2)当a=-1时,方程f(x)=2x3-1仅有一个实数根,即证方程2x3+x2-4x-4有且仅有一个实数根.
令h(x)=2x3+x2-4x-4,
由h′(x)=6x2+2x-4=0,得x=-1,或x=
2
3

由此易得函数h(x)=2x3+x2-4x-4在区间(-∞,-1),(
2
3
,+∞)上单调递增,在区间(-1,
2
3
)上递减
h(x)的极大值h(-1)=-1<0
故函数h(x)的图象与x轴仅有一个交点,
∴当a=-1时,方程f(x)=2x3-1仅有一个实数根
(3)设r(x)=f(x)+(2a-1)x+3a+1=ax2+x+1,
r(0)=1,对称轴为x=-
1
2a

由题意,得
-
1
2
≤a<0
r(1)=a+2≤3
a<-
1
2
r(-
1
2a
)=1-
1
4a
≤3
r(1)=a+2≥-3

解得a≥-5
故使|f(x)+(2a-1)x+3a+1|≤3成立的充要条件为a≥-5.
点评:本题考查的知识点是根的存在性及根的个数判断,函数单调性的性质,及二次函数的性质,待定系数法求函数的解析式.步骤一般是首先确定所求问题含待定系数的解析式.其次根据恒等条件,列出一组含待定系数的方程.最后解方程或消去待定系数,从而使问题得到解决.其中熟练掌握二次函数、二次不等式、二次方程之间的联系,熟练的进行相互转化是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案