精英家教网 > 高中数学 > 题目详情
12.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)≤0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

分析 由题意可得$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow{b}$)≥1,只需求|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|2最大值即可,然后根据数量积的运算法则展开即可求得.

解答 解:∵$\overrightarrow{a}$•$\overrightarrow{b}$=0,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)≤0,
∴$\overrightarrow{a}•\overrightarrow{b}$-$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow{b}$•$\overrightarrow{c}$+${\overrightarrow{c}}^{2}$≤0,
∴$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow{b}$)≥1,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|2=($\overrightarrow{a}$-$\overrightarrow{c}$)2+($\overrightarrow{b}$-$\overrightarrow{c}$)2+2($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=4-2$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow{b}$)+2[-($\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow{b}$)+1]=6-4$\overrightarrow{c}$($\overrightarrow{a}$+$\overrightarrow{b}$)≤6-4=2,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|的最大值$\sqrt{2}$
故选:B

点评 本题考查平面向量数量积的运算和模的计算问题,考查学生灵活应用知识分析、解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图是一个几何体的三视图,其中正视图和侧视图都是腰长为3,底边长为2的等腰三角形,则该几何体的体积是(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$2\sqrt{2}π$C.$8\sqrt{2}π$D.$\frac{{8\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+b(a,b∈R).
(Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函数f(x)的值域;
(ii)若函数f(x)的值域为[0,1],求a,b的值;
(Ⅱ)当|x|≥2时,恒有f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α、β都是锐角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,则tanα=4$\sqrt{3}$,cosβ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-a,g(x)=a|x|,a∈R.
(1)设F(x)=f(x)-g(x).
①若a=$\frac{1}{2}$,求函数y=F(x)的零点;
②若函数y=F(x)存在零点,求a的取值范围.
(2)设h(x)=f(x)+g(x),x∈[-2,2],若对任意x1,x2∈[-2,2],|h(x1)-h(x2)|≤6恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=loga$\frac{2-x}{b+x}$(0<a<1)为奇函数,当x∈(-2,2a)时,函数f(x)的值域是(-∞,1),则实数a+b=$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点B(-2,0)、C(2,0),且△ABC的周长等于14,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a=(cosωx,sinωx)$,$\overrightarrow b=(cosωx,\sqrt{3}cosωx)$,其中ω>0,函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,其最小正周期为π.
(1)求函数f(x)的表达式及单调减区间;
(2)在△ABC的内角A,B,C所对的边分别为a,b,c,S为其面积,若f($\frac{A}{2}$)=1,b=1,S△ABC=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.在频率分布直方图中,众数左边和右边的直方图的面积相等
B.为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行编号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样
C.“x≠1”是“x2-3x+2≠0”的充分不必要条件
D.命题p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定为:“?x∈R,x2-3x+2≥0”

查看答案和解析>>

同步练习册答案