【题目】一个袋中装有四个形状大小完全相同的编号为1,2,3,4的球,从袋中随机抽取一个球,将其编号记为m,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为n,则关于x的一元二次方程无实根的概率为__________。
【答案】
【解析】
本题是一个古典概型,由分步计数原理知基本事件共12个,当m>0,n>0时,方程无实根的充要条件为m<n,满足条件的事件中包含6个基本事件,由古典概型公式得到结果.
设事件A为“方程无实根”.
当m>0,n>0时,方程无实根的充要条件为m<n.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),
(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),
(4,2),(4,3),其中第一个数表示m的取值,第二个数表示n的取值.
事件A中包含6个基本事件:(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),
事件A发生的概率为p(A)=.
科目:高中数学 来源: 题型:
【题目】已知分别为椭圆C: 的左、右焦点,点 在椭圆上,且 轴,的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上. (Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2: =1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为 .直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求数列,的通项公式;
(2)设数列满足,数列的前n项和为,若不等式
对一切n∈N*恒成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C上任意一点到的距离与到点 的距离之比均为.
(1)求曲线C的方程;
(2)设点,过点作两条相异直线分别与曲线C相交于两点,且直线和直线的倾斜角互补,求线段的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结束,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间超过30分钟的概率是__________。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com