精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为平行四边形,平面平面是边长为4的等边三角形,的中点.

(1)求证:

(2)若直线与平面所成角的正弦值为,求平面 与平面所成的锐二面角的余弦值.

【答案】(1)见证明;(2)

【解析】

1)由面面垂直的性质可得平面.可得 ,结合平面.,可得,得到平面,从而可得结果;(2)根据直线与平面所成角的正弦值为,可求得 ,以所在的直线分别为轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求出平面的一个法向量,结合平面的一个法向量为,利用空间向量夹角余弦公式可得结果.

(1)因为是等边三角形,的中点,

所以.

又平面平面,平面平面平面

所以平面.

所以

又因为

所以平面.所以.

又因为,所以.

平面,所以平面.

所以.

(2)

由(1)得平面.

所以就是直线与平面所成角.

因为直线与平面所成角的正弦值为,即,所以.

所以,解得.则.

由(1)得两两垂直,所以以为原点,所在的直线分别为轴,建立如图所示的空间直角坐标系,

则点

所以.

令平面的法向量为,则

解得

,可得平面的一个法向量为

易知平面的一个法向量为

设平面与平面所成的锐二面角的大小为,则.

所以平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数

(Ⅰ)求不等式的解集;

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线)的右焦点作圆的切线,切点为.直线交抛物线于点,若为坐标原点),则双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,MAB的中点.

1)求证:;

2)求二面角的余弦值;

3)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是圆O的直径,点C是圆O上异于AB的动点,过动点C的直线VC垂直于圆O所在平面,DE分别是VAVC的中点.

1)判断直线DE与平面VBC的位置关系,并说明理由;

2)当△VAB为边长为的正三角形时,求四面体VDEB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆 是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E

1)求曲线E的方程;

2)过点D(03)作直线m与曲线E交于AB两点,点C满足 (O为原点),求四边形OACB面积的最大值,并求此时直线m的方程;

3)已知抛物线上,是否存在直线与曲线E交于GH,使得GH的中点F落在直线y=2x上,并且与抛物线相切,若直线存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)解不等式:

(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数恒成立.

(1)求

(2)求证:是等比数列;

(3)设数列满足,若数列,…,)为等差数列,求的最大值.

查看答案和解析>>

同步练习册答案